
UNIT IV 

Deadlocks: System Model, deadlock characterization, Methods of handling Deadlocks, Deadlock prevention, 
Detection and Avoidance, Recovery from deadlock. 

Mass-storage structure: Overview of Mass-storage structure, Disk structure, Disk attachment, Disk scheduling, 
Swap-space management, RAID structure, Stable-storage implementation. 

File system Interface: The concept of a file, Access Methods, Directory and Disk structure, File system mounting, 
File sharing, Protection. 

File system Implementation: File-system structure, File-system Implementation, Directory Implementation, Allocation 
Methods, Free-Space management. 

DEADLOCKS 

 

 Definition 

A set of two or more processes are deadlocked if they are blocked 
(i.e., in the waiting state) each holding a resource and waiting to 
acquire a resource held by another process in the set. 

or 

A process is deadlocked if it is waiting for an event which is never 
going to happen. 

 

  
 
Example: 

 a system has two tape drives 
 two processes are deadlocked if each holds one tape drive 

and has requested the other 

 
Example: semaphores A and B, each initialized to 1: 
      P_0          P_1 

      ---          --- 

      A.wait();    B.wait(); 

      B.wait();    A.wait(); 



      A.signal();  B.signal(); 

      B.signal();  A.signal(); 

Deadlock depends on the dynamics of the execution.  
Illustrates that it is difficult to identify and test for deadlocks which 
may occur only under certain circumstances.  
 
System model: 

 resource types: R1, R2, ..., Rn 
 each resource R has W i instances 
 each process utilizes a resource as follows: 

      // request (e.g., open() system call) 

      // use 

      // release (e.g., close() system call) 

Any instance of a resource type can be used to satisfy a request of 
that resource. 

Conditions Necessary for Deadlock 

All of the following four necessary conditions must hold 
simultaneously for deadlock to occur: 

 mutual exclusion: only one process can use a resource at a 
time. 

 hold and wait: a process holding at least one resource is 
waiting to acquire additional resources which are currently 
held by other processes. 

 no preemption: a resource can only be released voluntarily 

by the process holding it. 
 circular wait: a cycle of process requests exists (i.e., P0 is 

waiting for a resource hold by P1 who is waiting for a resource 
held by Pj ... who is waiting for a resource held by P(n-1) which 
is waiting for a resource held by Pn which is waiting for a 
resource held by P0). 

Circular wait implies the hold and wait condition. Therefore, these 
conditions are not completely independent. 

Resource Allocation Graph Syntax 

A resource allocation graph contains a set of vertices V and a set of 
edges E.  
 
V is partitioned into two types: 



 P = {P1, P2, ..., Pn} is the set of all processes. 

 R = {R1, R2, ..., Rm} is the set of all resources. 

A request is represented by a directed edge from Pi to Rj.  
An assignment is represented by a directed edge from Rj to Pi.  

 resource type with four instances:  

  

 Pi requests an instance of Rj  

  

 Pi is holding an instance of Rj  

 

Sample Resource Allocation Graphs 

 resource allocation graph without deadlock:  

o P1 wants a resource held by P2 
o no process is requesting an instance of R4  



  
(regenerated from [OSC8] Fig. 7.2 on p. 288)  

 resource allocation graph with a cycle and deadlock: 

 

  
(regenerated from [OSC8] Fig. 7.3 on p. 289)  



 resource allocation graph with a cycle but no deadlock:  

  

(regenerated from [OSC8] Fig. 7.4 on p. 289)  

 

 

 

 

 

 

 

Possibility of Deadlock 



   

If a resource allocation graph contains no cycles, then no process is 
deadlocked. 

If a resource allocation graph contains a cycle, then a 
deadlock may exist. 

Therefore, a cycle means deadlock is possible, but not 
necessarily present. 

A cycle is not sufficient proof of the presence of deadlock. A cycle is 
a necessary condition for deadlock, but not a sufficient condition for 
deadlock. 

Resource Allocation Graph Summary 

 if a resource allocation graph does not contain a cycle, then 
there is absolutely no possibility of deadlock 

 if a resource allocation graph contains a cycle, then there is 
the possibility of deadlock 

 if each resource type has exactly one instance, then a cycle 
implies that deadlock has occurred 

 if the cycle involves only a set of resource types, each of which 
has only a single instance, then a deadlock has occurred 

 if all instances of a resource are allocated to a process in a 
cycle, then there is deadlock 

 



Methods for Handling Deadlock 

The following are methods for addressing the possibility of deadlock: 

 ensure that the system never enters a deadlocked state: 
o deadlock prevention 
o deadlock avoidance 

 deadlock detection and recovery: allow the system to enter a 
deadlocked state, then deal with and eliminate the problem 

 ignore the problem: approached used by many operating 
systems including UNIX and Windows, and the Java VM 

Deadlock Prevention 

Restrain the ways resource requests are made so to prevent one of 
the four conditions necessary for deadlock. 

 prevent mutual exclusion 

o use only sharable resources (e.g., a read-only file) 
o impossible for practical systems 

 

 prevent hold and wait 
o methods 

 preallocate 
 do not pick up one chopstick if you cannot 

pick up the other 
 for a process that copies data from DVD 

drive to a file on disk and then prints it 
from there: 

1. request DVD drive 
2. request disk file 
3. request printer 

 all system calls requesting resources must 
proceed all other system calls 

 

 a process can request resources only when it 
has none 

1. request DVD drive and disk file 
2. release DVD drive and disk file 
3. request disk file and printer (no guarantee 

data will still be there) 

http://perugini.cps.udayton.edu/teaching/courses/cps346/lecture_notes/deadlock.html#NecessaryConditions


4. release disk file and printer 

 

 inefficient 
 starvation possible 

 

 prevent no preemption (i.e., allow preemption, and permit 
the OS to take away resources from a process) 

 when a process must wait, it must release its resources 
 some resources cannot be feasibly preempted (e.g., 

printers, tape drives) 

 

 prevent circular wait 

 impose a total ordering on resources 
 only allow requests in an increasing order 

Usually a deadlock prevention approach is simply unreasonable. 

Deadlock Avoidance 

This requires that the system has some information available up 
front. Each process declares the maximum number of resources of 
each type which it may need. Dynamically examine the resource 
allocation state to ensure that there can never be a circular-wait 
condition. 

The system's resource-allocation state is defined by the number of 
available and allocated resources, and the maximum possible 
demands of the processes. When a process requests an available 
resource, the system must decide if immediate allocation leaves the 
system in a safe state. 

The system is in a safe state if there exists a safe sequence of all 
processes: 

Sequence < P1, P2, ... Pn > is safe for the current allocation state if, 
for each Pi, the resources which Pi can still request can be satisfied 
by 

 the currently available resources plus 



 the resources held by all of the Pj's, where j < i. 

If the system is in a safe state, there can be no deadlock. If the 
system is in an unsafe state, there is the possibility of deadlock. 

Example: consider a system with 12 magnetic tapes and 3 

processes (P0, P1, and P2): 

available = 

3 

Process Maximum Needs Holding Needs 

P0 10 5 5 

P1 4 2 2 

P2 9 2 7 

Is the system in a safe state? If so, which sequence satisfies the 
safety criteria? 

 

available = 

2 

Process Maximum Needs Holding Needs 

P0 10 5 5 

P1 4 2 2 

P2 9 3 6 

Is the system in a safe state? If so, which sequence satisfies the 
safety criteria? 

 

In this scheme, a process which requests a resource that is currently 
available, may still have to wait. Thus, resource utilization may be 
lower than it would otherwise be. 

Deadlock Avoidance Algorithms 

Two deadlock avoidance algorithms: 

 resource-allocation graph algorithm 
 Banker's algorithm 



 
Resource-allocation graph algorithm 

 only applicable when we only have 1 instance of each 
resource type 

 claim edge (dotted edge), like a future request edge 
 when a process requests a resource, the claim edge is 

converted to a request edge 
 when a process releases a resource, the assignment edge is 

converted to a claim edge 
 cycle detection: O(n²) 

Banker's Algorithm 

 a classic deadlock avoidance algorithm 
 more general than resource-allocation graph algorithm 

(handles multiple instances of each resource type), but 
 is less efficient 

 

Resource-allocations graphs for deadlock 
avoidance 

 

  
 
(regenerated from [OSC8] Fig. 7.6 on p. 297)  
 



  
 
(regenerated from [OSC8] Fig. 7.7 on p. 297)  

Banker's Algorithm 

We call Banker's algorithm when a request for R is made. Let n be 

the number of processes in the system, and m be the number of 

resource types.  
 
Define: 

 available[m]: the number of units of R currently unallocated 

(e.g., available[3] = 2) 

 max[n][m]: describes the maximum demands of each process 

(e.g., max[3][1] = 2) 

 allocation[n][m]: describes the current allocation status ( 

e.g., allocation[5][1] = 3) 

 need[n][m]: describes the remaining possible need 

(i.e., need[i][j] = max[i][j] - allocation[i][j]) 

Resource-request algorithm:  

 
Define: 

 request[n][m]: describes the current outstanding requests of 

all processes (e.g., request[2][1] = 3) 

1. If request[i][j] <= need[i][j], to to step 2; otherwise, raise 
an error condition. 

2. If request[i][j] > available[j], then the process must wait. 

3. Otherwise, pretend to allocate the requested resources to Pi : 



4.       available[j] = available[j] - request[i][j] 
5.       allocation[i][j] = allocation[i][j] + 

request[i][j] 

      need[i][j] = need[i][j] - request[i][j] 

Once the resources are allocated, check to see if the system 
state is safe. If unsafe, the process must wait and the old 
resource-allocated state is restored. 

Safety algorithm (to check for a safe state):  

1. Let work be an integer array of length m, initialized 

to available. 

Let finish be a boolean array of length n, initialized to false. 

 

2. Find an i such that both: 
o finish[i] == false 
o need[i] <= work 

If no such i exists, go to step 4 

 

3. work = work + allocation[i]; 
finish[i] = true; 

Go to step 2 

 

4. If finish[i] == true for all i, then the system is in a safe 

state, otherwise unsafe. 

Run-time complexity: O(m × n²).  

Example: consider a system with 5 processes (P0 ... P4) and 3 

resources types (A(10) B(5) C(7)) 

resource-allocation state at time t0: 

Process Allocation Max Need Available 
 A B C A B C A B C A B C 

P0 0 1 0 7 5 3 7 4 3 3 3 2 

P1 2 0 0 3 2 2 1 2 2    

P2 3 0 2 9 0 2 6 0 0    



P3 2 1 1 2 2 2 0 1 1    

P4 0 0 2 4 3 3 4 3 1    

Is the system in a safe state? If so, which sequence satisfies the 
safety criteria? 

< P1, P3, P4, P2, P0 > 

Now suppose, P1 requests an additional instance of A and 2 more 
instances of type C. 

request[1] = (1,0,2) 

1. check if request[1] <= need[i] (yes) 

2. check if request[1] <= available[i] (yes) 

3. do pretend updates to the state 

Process Allocation Max Need Available 
 A B C A B C A B C A B C 

P0 0 1 0 7 5 3 7 4 3 3 3 2 

P1 3 0 2 3 2 2 0 2 0    

P2 3 0 2 9 0 2 6 0 0    

P3 2 1 1 2 2 2 0 1 1    

P4 0 0 2 4 3 3 4 3 1    

Is the system in a safe state? If so, which sequence satisfies the 
safety criteria? 

<P1, P3, P4, P0, P2> 

Hence, we immediately grant the request. 

 

Will a request of (3,3,0) by P4 be granted? 

Will a request of (0,2,0) by P0 be granted? 

Deadlock Detection 

 requires an algorithm which examines the state of the system 
to determine whether a deadlock has occurred 

 requires overhead 
o run-time cost of maintaining necessary information and 

executing the detection algorithm 



o potential losses inherent in recovering from deadlock 

Single instance of each resource type 

 wait-graph 
 Pi → Pj = Pi > Rq and Rq → Pj 
 detect cycle: O(n²) 

 overhead: maintain the graph + invoke algorithm 

Resource-allocations graphs for deadlock detection 

resource-allocation graph:  
 

  
 
corresponding wait-for graph:  
 



  
 
(regenerated from [OSC8] Fig. 7.8 on p. 302) 

Multiple instances of a resource type: use an algorithm similar to 
Banker's, which simply investigates every possible allocation 
sequence for the processes which remain to be completed. 

Define: 

 available[m] 
 allocation[n][m] 
 request[n][m] 

with their usual semantics. 

Algorithm: 

1. Let work be an integer array of length m, initialized 

to available.  

 
Let finish be a boolean array of length n.  

 
For all i, if allocation[i] != 0, then finish[i] = false;  

Otherwise finish[i] = true. 

 

2. Find an i such that both 

o finish[i] == false // Pi is currently not involved in a 

deadlock 



o request[i] <= work 

If no such i exists, go to step 4 

 

3. // reclaim the resources of process Pi  
work = work + allocation[i];  

finish[i] = true;  

Go to step 2 

 

4. If finish[i] == false for some i,  
Then the system is in a deadlocked state.  
Moreover, if finish[i] == false, then process Pi is 

deadlocked. 

Run-time complexity: O(m × n²). 

Example: consider a system with 5 processes (P0 .. P4) and 3 

resources types (A(7) B(2) C(6)) 

resource-allocation state at time t0: 

Process Allocation Request Available 
 A B C A B C A B C 

P0 0 1 0 0 0 0 0 0 0 

P1 2 0 0 2 0 2    

P2 3 0 3 0 0 0    

P3 2 1 1 1 0 0    

P4 0 0 2 0 0 2    

Is the system in a deadlocked state? 

If not, which sequence results in finish[i] == true for all i ? 

< P0, P2, P3, P1, P4 > 

Now suppose, P2 requests an additional instance of C: 

Process Allocation Request Available 
 A B C A B C A B C 



P0 0 1 0 0 0 0 0 0 0 

P1 2 0 0 2 0 2    

P2 3 0 3 0 0 1    

P3 2 1 1 1 0 0    

P4 0 0 2 0 0 2    

Is the system in a deadlocked state?    Yes. 

If not, which sequence results in finish[i] == true for all i ? 

Although we can reclaim the resources held by P0, the number of 
available resources is insufficient to fulfill the requests of the other 
processes. 

Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4. 

When should we invoke the detection algorithm? Depends on: 

 how often is a deadlock likely to occur 
 how many processes will be affected by deadlock when it 

happens 

If deadlocks occur frequently, then the algorithm should be invoked 
frequently. 

Deadlocks only occur when some process makes a request which 
cannot be granted (if this request is the completes a chain of waiting 
processes). 

 Extreme: invoke the algorithm every time a request is denied 
 Alternative: invoke the algorithm at less frequent time 

intervals: 
o once per hour 
o whenever CPU utilization < 40% 
o disadvantage: cannot determine exactly which process 

'caused' the deadlock 

Deadlock Recovery 

How to deal with deadlock: 

 inform operator and let them decide how to deal with it 
manually 

 let the system recover from the deadlock automatically: 



o abort or more of the deadlocked processes to break the 
circular wait 

o preempt some resources from one or more of the 
processes to break the circular wait 

Process termination 

Aborting a process is not easy; involves clean-up (e.g., file, printer). 

 abort all deadlocked processes (disadvantage: wasteful) 
 abort one process at a time until the circular wait is eliminated 

o disadvantage: lot of overhead; must re-run algorithm 
after each kill 

o how to determine which process to terminate? minimize 
cost 

 priority of the process 
 how long has it executed? how much more time 

does it need? 
 how many and what type of resources has the 

process used? 
 how many more resources will the process need 

to complete? 
 how many processes will need to be terminated? 
 is the process interactive or batch? 

Resource Preemption 

Incrementally preempt and re-allocate resources until the circular wait 
is broken. 

 selecting a victim (see above) 
 rollback: what should be done with process which lost the 

resource? 
clearly it cannot continue; must rollback to a safe state (???) 
=> total rollback 

 starvation: pick victim only small (finite) number of times; use 
number of rollbacks in decision 

 

 
 

 

 



 

Mass-Storage Structure 

10.1 Overview of Mass-Storage Structure 

10.1.1 Magnetic Disks 

 Traditional magnetic disks have the following basic structure: 

o One or more platters in the form of disks covered with magnetic 

media. Hard disk platters are made of rigid metal, while "floppy" 

disks are made of more flexible plastic. 

o Each platter has two working surfaces. Older hard disk drives 

would sometimes not use the very top or bottom surface of a stack 

of platters, as these surfaces were more susceptible to potential 

damage. 

o Each working surface is divided into a number of concentric rings 

called tracks. The collection of all tracks that are the same 

distance from the edge of the platter, ( i.e. all tracks immediately 

above one another in the following diagram ) is called a cylinder. 

o Each track is further divided into sectors, traditionally containing 

512 bytes of data each, although some modern disks occasionally 

use larger sector sizes. ( Sectors also include a header and a 

trailer, including checksum information among other things. 

Larger sector sizes reduce the fraction of the disk consumed by 

headers and trailers, but increase internal fragmentation and the 

amount of disk that must be marked bad in the case of errors. ) 

o The data on a hard drive is read by read-write heads. The standard 

configuration ( shown below ) uses one head per surface, each on 

a separate arm, and controlled by a common arm assembly which 

moves all heads simultaneously from one cylinder to another. ( 

Other configurations, including independent read-write heads, 

may speed up disk access, but involve serious technical 

difficulties. ) 

o The storage capacity of a traditional disk drive is equal to the 

number of heads ( i.e. the number of working surfaces ), times the 

number of tracks per surface, times the number of sectors per 

track, times the number of bytes per sector. A particular physical 

block of data is specified by providing the head-sector-cylinder 

number at which it is located. 



 
Figure 10.1 - Moving-head disk mechanism. 

 In operation the disk rotates at high speed, such as 7200 rpm ( 120 

revolutions per second. ) The rate at which data can be transferred from 

the disk to the computer is composed of several steps: 

o The positioning time, a.k.a. the seek time or random access 

time is the time required to move the heads from one cylinder to 

another, and for the heads to settle down after the move. This is 

typically the slowest step in the process and the predominant 

bottleneck to overall transfer rates. 

o The rotational latency is the amount of time required for the 

desired sector to rotate around and come under the read-write 

head.This can range anywhere from zero to one full revolution, 

and on the average will equal one-half revolution. This is another 

physical step and is usually the second slowest step behind seek 

time. ( For a disk rotating at 7200 rpm, the average rotational 

latency would be 1/2 revolution / 120 revolutions per second, or 

just over 4 milliseconds, a long time by computer standards. 

o The transfer rate, which is the time required to move the data 

electronically from the disk to the computer. ( Some authors may 



also use the term transfer rate to refer to the overall transfer rate, 

including seek time and rotational latency as well as the electronic 

data transfer rate. ) 

 Disk heads "fly" over the surface on a very thin cushion of air. If they 

should accidentally contact the disk, then a head crash occurs, which 

may or may not permanently damage the disk or even destroy it 

completely. For this reason it is normal to park the disk heads when 

turning a computer off, which means to move the heads off the disk or to 

an area of the disk where there is no data stored. 

 Floppy disks are normally removable. Hard drives can also be 

removable, and some are even hot-swappable, meaning they can be 

removed while the computer is running, and a new hard drive inserted in 

their place. 

 Disk drives are connected to the computer via a cable known as the I/O 

Bus. Some of the common interface formats include Enhanced 

Integrated Drive Electronics, EIDE; Advanced Technology Attachment, 

ATA; Serial ATA, SATA, Universal Serial Bus, USB; Fiber Channel, 

FC, and Small Computer Systems Interface, SCSI. 

 The host controller is at the computer end of the I/O bus, and the disk 

controller is built into the disk itself. The CPU issues commands to the 

host controller via I/O ports. Data is transferred between the magnetic 

surface and onboard cache by the disk controller, and then the data is 

transferred from that cache to the host controller and the motherboard 

memory at electronic speeds. 

10.1.2 Solid-State Disks - New 

 As technologies improve and economics change, old technologies are 

often used in different ways. One example of this is the increasing used 

of solid state disks, or SSDs. 

 SSDs use memory technology as a small fast hard disk. Specific 

implementations may use either flash memory or DRAM chips protected 

by a battery to sustain the information through power cycles. 

 Because SSDs have no moving parts they are much faster than 

traditional hard drives, and certain problems such as the scheduling of 

disk accesses simply do not apply. 

 However SSDs also have their weaknesses: They are more expensive 

than hard drives, generally not as large, and may have shorter life spans. 

 SSDs are especially useful as a high-speed cache of hard-disk 

information that must be accessed quickly. One example is to store 

filesystem meta-data, e.g. directory and inode information, that must be 

accessed quickly and often. Another variation is a boot disk containing 



the OS and some application executables, but no vital user data. SSDs 

are also used in laptops to make them smaller, faster, and lighter. 

 Because SSDs are so much faster than traditional hard disks, the 

throughput of the bus can become a limiting factor, causing some SSDs 

to be connected directly to the system PCI bus for example. 

10.1.3 Magnetic Tapes - was 12.1.2 

 Magnetic tapes were once used for common secondary storage before 

the days of hard disk drives, but today are used primarily for backups. 

 Accessing a particular spot on a magnetic tape can be slow, but once 

reading or writing commences, access speeds are comparable to disk 

drives. 

 Capacities of tape drives can range from 20 to 200 GB, and compression 

can double that capacity. 

10.2 Disk Structure 

 The traditional head-sector-cylinder, HSC numbers are mapped to linear block 

addresses by numbering the first sector on the first head on the outermost track 

as sector 0. Numbering proceeds with the rest of the sectors on that same track, 

and then the rest of the tracks on the same cylinder before proceeding through 

the rest of the cylinders to the center of the disk. In modern practice these linear 

block addresses are used in place of the HSC numbers for a variety of reasons: 

1. The linear length of tracks near the outer edge of the disk is much longer 

than for those tracks located near the center, and therefore it is possible 

to squeeze many more sectors onto outer tracks than onto inner ones. 

2. All disks have some bad sectors, and therefore disks maintain a few 

spare sectors that can be used in place of the bad ones. The mapping of 

spare sectors to bad sectors in managed internally to the disk controller. 

3. Modern hard drives can have thousands of cylinders, and hundreds of 

sectors per track on their outermost tracks. These numbers exceed the 

range of HSC numbers for many ( older ) operating systems, and 

therefore disks can be configured for any convenient combination of 

HSC values that falls within the total number of sectors physically on the 

drive. 

 There is a limit to how closely packed individual bits can be placed on a 

physical media, but that limit is growing increasingly more packed as 

technological advances are made. 

 Modern disks pack many more sectors into outer cylinders than inner ones, 

using one of two approaches: 



o With Constant Linear Velocity, CLV, the density of bits is uniform from 

cylinder to cylinder. Because there are more sectors in outer cylinders, 

the disk spins slower when reading those cylinders, causing the rate of 

bits passing under the read-write head to remain constant. This is the 

approach used by modern CDs and DVDs. 

o With Constant Angular Velocity, CAV, the disk rotates at a constant 

angular speed, with the bit density decreasing on outer cylinders. ( These 

disks would have a constant number of sectors per track on all cylinders. 

) 

10.3 Disk Attachment 

Disk drives can be attached either directly to a particular host ( a local disk ) or to a 

network. 

10.3.1 Host-Attached Storage 

 Local disks are accessed through I/O Ports as described earlier. 
 The most common interfaces are IDE or ATA, each of which allow up to two 

drives per host controller. 
 SATA is similar with simpler cabling. 
 High end workstations or other systems in need of larger number of disks 

typically use SCSI disks: 
o The SCSI standard supports up to 16 targets on each SCSI bus, one of 

which is generally the host adapter and the other 15 of which can be 
disk or tape drives. 

o A SCSI target is usually a single drive, but the standard also supports up 
to 8 units within each target. These would generally be used for 
accessing individual disks within a RAID array. ( See below. ) 

o The SCSI standard also supports multiple host adapters in a single 
computer, i.e. multiple SCSI busses. 

o Modern advancements in SCSI include "fast" and "wide" versions, as 
well as SCSI-2. 

o SCSI cables may be either 50 or 68 conductors. SCSI devices may be 
external as well as internal. 

o See wikipedia for more information on the SCSI interface. 
 FC is a high-speed serial architecture that can operate over optical fiber or 

four-conductor copper wires, and has two variants: 
o A large switched fabric having a 24-bit address space. This variant 

allows for multiple devices and multiple hosts to interconnect, forming 

http://en.wikipedia.org/wiki/SCSI


the basis for the storage-area networks, SANs, to be discussed in a 
future section. 

o The arbitrated loop, FC-AL, that can address up to 126 devices ( drives 
and controllers. ) 

10.3.2 Network-Attached Storage 

 Network attached storage connects storage devices to computers using a 
remote procedure call, RPC, interface, typically with something like NFS 
filesystem mounts. This is convenient for allowing several computers in a 
group common access and naming conventions for shared storage. 

 NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols 
and standard network connections, allowing long-distance remote access to 
shared files. 

 NAS allows computers to easily share data storage, but tends to be less 
efficient than standard host-attached storage. 

 
Figure 10.2 - Network-attached storage. 

10.3.3 Storage-Area Network 

 A Storage-Area Network, SAN, connects computers and storage devices in a 
network, using storage protocols instead of network protocols. 

 One advantage of this is that storage access does not tie up regular 
networking bandwidth. 

 SAN is very flexible and dynamic, allowing hosts and devices to attach and 
detach on the fly. 

 SAN is also controllable, allowing restricted access to certain hosts and 
devices. 



 
Figure 10.3 - Storage-area network. 

10.4 Disk Scheduling 

 As mentioned earlier, disk transfer speeds are limited primarily by seek 
times and rotational latency. When multiple requests are to be processed 
there is also some inherent delay in waiting for other requests to be 
processed. 

 Bandwidth is measured by the amount of data transferred divided by the total 
amount of time from the first request being made to the last transfer being 
completed, ( for a series of disk requests. ) 

 Both bandwidth and access time can be improved by processing requests in a 
good order. 

 Disk requests include the disk address, memory address, number of sectors to 
transfer, and whether the request is for reading or writing. 

10.4.1 FCFS Scheduling 

 First-Come First-Serve is simple and intrinsically fair, but not very efficient. 
Consider in the following sequence the wild swing from cylinder 122 to 14 and 
then back to 124: 



 
Figure 10.4 - FCFS disk scheduling. 

10.4.2 SSTF Scheduling 

 Shortest Seek Time First scheduling is more efficient, but may lead to 
starvation if a constant stream of requests arrives for the same general area of 
the disk. 

 SSTF reduces the total head movement to 236 cylinders, down from 640 
required for the same set of requests under FCFS. Note, however that the 
distance could be reduced still further to 208 by starting with 37 and then 14 
first before processing the rest of the requests. 



 
Figure 10.5 - SSTF disk scheduling. 

10.4.3 SCAN Scheduling 

 The SCAN algorithm, a.k.a. the elevator algorithm moves back and forth from 
one end of the disk to the other, similarly to an elevator processing requests in 
a tall building. 



 
Figure 10.6 - SCAN disk scheduling. 

 Under the SCAN algorithm, If a request arrives just ahead of the moving head 
then it will be processed right away, but if it arrives just after the head has 
passed, then it will have to wait for the head to pass going the other way on 
the return trip. This leads to a fairly wide variation in access times which can 
be improved upon. 

 Consider, for example, when the head reaches the high end of the disk: 
Requests with high cylinder numbers just missed the passing head, which 
means they are all fairly recent requests, whereas requests with low numbers 
may have been waiting for a much longer time. Making the return scan from 
high to low then ends up accessing recent requests first and making older 
requests wait that much longer. 

10.4.4 C-SCAN Scheduling 

 The Circular-SCAN algorithm improves upon SCAN by treating all requests in a 
circular queue fashion - Once the head reaches the end of the disk, it returns 
to the other end without processing any requests, and then starts again from 
the beginning of the disk: 



 
Figure 10.7 - C-SCAN disk scheduling. 

12.4.5 LOOK Scheduling 

 LOOK scheduling improves upon SCAN by looking ahead at the queue of 
pending requests, and not moving the heads any farther towards the end of 
the disk than is necessary. The following diagram illustrates the circular form 
of LOOK: 



 
Figure 10.8 - C-LOOK disk scheduling. 

10.4.6 Selection of a Disk-Scheduling Algorithm 

 With very low loads all algorithms are equal, since there will normally only be 
one request to process at a time. 

 For slightly larger loads, SSTF offers better performance than FCFS, but may 
lead to starvation when loads become heavy enough. 

 For busier systems, SCAN and LOOK algorithms eliminate starvation problems. 
 The actual optimal algorithm may be something even more complex than 

those discussed here, but the incremental improvements are generally not 
worth the additional overhead. 

 Some improvement to overall filesystem access times can be made by 
intelligent placement of directory and/or inode information. If those 
structures are placed in the middle of the disk instead of at the beginning of 
the disk, then the maximum distance from those structures to data blocks is 
reduced to only one-half of the disk size. If those structures can be further 
distributed and furthermore have their data blocks stored as close as possible 
to the corresponding directory structures, then that reduces still further the 
overall time to find the disk block numbers and then access the corresponding 
data blocks. 

 On modern disks the rotational latency can be almost as significant as the seek 
time, however it is not within the OSes control to account for that, because 



modern disks do not reveal their internal sector mapping schemes, 
( particularly when bad blocks have been remapped to spare sectors. ) 

o Some disk manufacturers provide for disk scheduling algorithms directly 
on their disk controllers, ( which do know the actual geometry of the 
disk as well as any remapping ), so that if a series of requests are sent 
from the computer to the controller then those requests can be 
processed in an optimal order. 

o Unfortunately there are some considerations that the OS must take into 
account that are beyond the abilities of the on-board disk-scheduling 
algorithms, such as priorities of some requests over others, or the need 
to process certain requests in a particular order. For this reason OSes 
may elect to spoon-feed requests to the disk controller one at a time in 
certain situations. 

10.6 Swap-Space Management 

 Modern systems typically swap out pages as needed, rather than swapping out 

entire processes. Hence the swapping system is part of the virtual memory 

management system. 

 Managing swap space is obviously an important task for modern OSes. 

10.6.1 Swap-Space Use 

 The amount of swap space needed by an OS varies greatly according to 

how it is used. Some systems require an amount equal to physical RAM; 

some want a multiple of that; some want an amount equal to the amount 

by which virtual memory exceeds physical RAM, and some systems use 

little or none at all! 

 Some systems support multiple swap spaces on separate disks in order to 

speed up the virtual memory system. 

10.6.2 Swap-Space Location 

Swap space can be physically located in one of two locations: 

 As a large file which is part of the regular filesystem. This is easy 

to implement, but inefficient. Not only must the swap space be 

accessed through the directory system, the file is also subject to 

fragmentation issues. Caching the block location helps in finding 

the physical blocks, but that is not a complete fix. 



 As a raw partition, possibly on a separate or little-used disk. This 

allows the OS more control over swap space management, which 

is usually faster and more efficient. Fragmentation of swap space 

is generally not a big issue, as the space is re-initialized every 

time the system is rebooted. The downside of keeping swap space 

on a raw partition is that it can only be grown by repartitioning the 

hard drive. 

12.6.3 Swap-Space Management: An Example 

 Historically OSes swapped out entire processes as needed. Modern 

systems swap out only individual pages, and only as needed. ( For 

example process code blocks and other blocks that have not been 

changed since they were originally loaded are normally just freed from 

the virtual memory system rather than copying them to swap space, 

because it is faster to go find them again in the filesystem and read them 

back in from there than to write them out to swap space and then read 

them back. ) 

 In the mapping system shown below for Linux systems, a map of swap 

space is kept in memory, where each entry corresponds to a 4K block in 

the swap space. Zeros indicate free slots and non-zeros refer to how 

many processes have a mapping to that particular block ( >1 for shared 

pages only. ) 

 
Figure 10.10 - The data structures for swapping on Linux systems. 

10.7 RAID Structure 



 The general idea behind RAID is to employ a group of hard drives together 
with some form of duplication, either to increase reliability or to speed up 
operations, ( or sometimes both. ) 

 RAID originally stood for Redundant Array of Inexpensive Disks, and was 
designed to use a bunch of cheap small disks in place of one or two larger 
more expensive ones. Today RAID systems employ large possibly expensive 
disks as their components, switching the definition to Independent disks. 

10.7.1 Improvement of Reliability via Redundancy 

 The more disks a system has, the greater the likelihood that one of them will 
go bad at any given time. Hence increasing disks on a system 
actually decreases the Mean Time To Failure, MTTF of the system. 

 If, however, the same data was copied onto multiple disks, then the data 
would not be lost unless both ( or all ) copies of the data were damaged 
simultaneously, which is a MUCH lower probability than for a single disk going 
bad. More specifically, the second disk would have to go bad before the first 
disk was repaired, which brings the Mean Time To Repair into play. For 
example if two disks were involved, each with a MTTF of 100,000 hours and a 
MTTR of 10 hours, then the Mean Time to Data Loss would be 500 * 10^6 
hours, or 57,000 years! 

 This is the basic idea behind disk mirroring, in which a system contains 
identical data on two or more disks. 

o Note that a power failure during a write operation could cause both 
disks to contain corrupt data, if both disks were writing simultaneously 
at the time of the power failure. One solution is to write to the two 
disks in series, so that they will not both become corrupted ( at least 
not in the same way ) by a power failure. And alternate solution 
involves non-volatile RAM as a write cache, which is not lost in the 
event of a power failure and which is protected by error-correcting 
codes. 

10.7.2 Improvement in Performance via Parallelism 

 There is also a performance benefit to mirroring, particularly with respect to 
reads. Since every block of data is duplicated on multiple disks, read 
operations can be satisfied from any available copy, and multiple disks can be 
reading different data blocks simultaneously in parallel. ( Writes could possibly 
be sped up as well through careful scheduling algorithms, but it would be 
complicated in practice. ) 



 Another way of improving disk access time is with striping, which basically 
means spreading data out across multiple disks that can be accessed 
simultaneously. 

o With bit-level striping the bits of each byte are striped across multiple 
disks. For example if 8 disks were involved, then each 8-bit byte would 
be read in parallel by 8 heads on separate disks. A single disk read 
would access 8 * 512 bytes = 4K worth of data in the time normally 
required to read 512 bytes. Similarly if 4 disks were involved, then two 
bits of each byte could be stored on each disk, for 2K worth of disk 
access per read or write operation. 

o Block-level striping spreads a filesystem across multiple disks on a block-by-
block basis, so if block N were located on disk 0, then block N + 1 would 
be on disk 1, and so on. This is particularly useful when filesystems are 
accessed in clusters of physical blocks. Other striping possibilities exist, 
with block-level striping being the most common. 

10.7.3 RAID Levels 

 Mirroring provides reliability but is expensive; Striping improves performance, 
but does not improve reliability. Accordingly there are a number of different 
schemes that combine the principals of mirroring and striping in different 
ways, in order to balance reliability versus performance versus cost. These are 
described by different RAID levels, as follows: ( In the diagram that follows, 
"C" indicates a copy, and "P" indicates parity, i.e. checksum bits. ) 

1. Raid Level 0 - This level includes striping only, with no mirroring. 
2. Raid Level 1 - This level includes mirroring only, no striping. 
3. Raid Level 2 - This level stores error-correcting codes on additional disks, 

allowing for any damaged data to be reconstructed by subtraction from 
the remaining undamaged data. Note that this scheme requires only 
three extra disks to protect 4 disks worth of data, as opposed to full 
mirroring. ( The number of disks required is a function of the error-
correcting algorithms, and the means by which the particular bad bit(s) 
is(are) identified. ) 

4. Raid Level 3 - This level is similar to level 2, except that it takes advantage 
of the fact that each disk is still doing its own error-detection, so that 
when an error occurs, there is no question about which disk in the array 
has the bad data. As a result a single parity bit is all that is needed to 
recover the lost data from an array of disks. Level 3 also includes 
striping, which improves performance. The downside with the parity 



approach is that every disk must take part in every disk access, and the 
parity bits must be constantly calculated and checked, reducing 
performance. Hardware-level parity calculations and NVRAM cache can 
help with both of those issues. In practice level 3 is greatly preferred 
over level 2. 

5. Raid Level 4 - This level is similar to level 3, employing block-level striping 
instead of bit-level striping. The benefits are that multiple blocks can be 
read independently, and changes to a block only require writing two 
blocks ( data and parity ) rather than involving all disks. Note that new 
disks can be added seamlessly to the system provided they are 
initialized to all zeros, as this does not affect the parity results. 

6. Raid Level 5 - This level is similar to level 4, except the parity blocks are 
distributed over all disks, thereby more evenly balancing the load on 
the system. For any given block on the disk(s), one of the disks will hold 
the parity information for that block and the other N-1 disks will hold 
the data. Note that the same disk cannot hold both data and parity for 
the same block, as both would be lost in the event of a disk crash. 

7. Raid Level 6 - This level extends raid level 5 by storing multiple bits of 
error-recovery codes, ( such as the Reed-Solomon codes ), for each bit 
position of data, rather than a single parity bit. In the example shown 
below 2 bits of ECC are stored for every 4 bits of data, allowing data 
recovery in the face of up to two simultaneous disk failures. Note that 
this still involves only 50% increase in storage needs, as opposed to 
100% for simple mirroring which could only tolerate a single disk failure. 

http://en.wikipedia.org/wiki/Reed-Solomon_coding


 
Figure 10.11 - RAID levels. 



 There are also two RAID levels which combine RAID levels 0 and 1 ( striping 
and mirroring ) in different combinations, designed to provide both 
performance and reliability at the expense of increased cost. 

o RAID level 0 + 1 disks are first striped, and then the striped disks 
mirrored to another set. This level generally provides better 
performance than RAID level 5. 

o RAID level 1 + 0 mirrors disks in pairs, and then stripes the mirrored 
pairs. The storage capacity, performance, etc. are all the same, but 
there is an advantage to this approach in the event of multiple disk 
failures, as illustrated below:. 

 In diagram (a) below, the 8 disks have been divided into two sets 
of four, each of which is striped, and then one stripe set is used 
to mirror the other set. 

 If a single disk fails, it wipes out the entire stripe set, but 
the system can keep on functioning using the remaining 
set. 

 However if a second disk from the other stripe set now 
fails, then the entire system is lost, as a result of two disk 
failures. 

 In diagram (b), the same 8 disks are divided into four sets of two, 
each of which is mirrored, and then the file system is striped 
across the four sets of mirrored disks. 

 If a single disk fails, then that mirror set is reduced to a 
single disk, but the system rolls on, and the other three 
mirror sets continue mirroring. 

 Now if a second disk fails, ( that is not the mirror of the 
already failed disk ), then another one of the mirror sets is 
reduced to a single disk, but the system can continue 
without data loss. 

 In fact the second arrangement could handle as many as 
four simultaneously failed disks, as long as no two of them 
were from the same mirror pair. 

 

 

 



o See the wikipedia article on nested raid levels for more information. 
o Here's a better 

explanation: http://www.storagereview.com/guide2000/ref/hdd/perf/r
aid/levels/multXY.html 

 
Figure 10.12 - RAID 0 + 1 and 1 + 0 

10.7.4 Selecting a RAID Level 

 Trade-offs in selecting the optimal RAID level for a particular application 
include cost, volume of data, need for reliability, need for performance, and 

http://en.wikipedia.org/wiki/RAID_10
http://www.storagereview.com/guide2000/ref/hdd/perf/raid/levels/multXY.html
http://www.storagereview.com/guide2000/ref/hdd/perf/raid/levels/multXY.html


rebuild time, the latter of which can affect the likelihood that a second disk 
will fail while the first failed disk is being rebuilt. 

 Other decisions include how many disks are involved in a RAID set and how 
many disks to protect with a single parity bit. More disks in the set increases 
performance but increases cost. Protecting more disks per parity bit saves 
cost, but increases the likelihood that a second disk will fail before the first 
bad disk is repaired. 

10.7.5 Extensions 

 RAID concepts have been extended to tape drives ( e.g. striping tapes for 
faster backups or parity checking tapes for reliability ), and for broadcasting of 
data. 

10.7.6 Problems with RAID 

 RAID protects against physical errors, but not against any number of bugs or 
other errors that could write erroneous data. 

 ZFS adds an extra level of protection by including data block checksums in all 
inodes along with the pointers to the data blocks. If data are mirrored and one 
copy has the correct checksum and the other does not, then the data with the 
bad checksum will be replaced with a copy of the data with the good 
checksum. This increases reliability greatly over RAID alone, at a cost of a 
performance hit that is acceptable because ZFS is so fast to begin with. 



 
Figure 10.13 - ZFS checksums all metadata and data. 

 Another problem with traditional filesystems is that the sizes are fixed, and 
relatively difficult to change. Where RAID sets are involved it becomes even 
harder to adjust filesystem sizes, because a filesystem cannot span across 
multiple filesystems. 

 ZFS solves these problems by pooling RAID sets, and by dynamically allocating 
space to filesystems as needed. Filesystem sizes can be limited by quotas, and 
space can also be reserved to guarantee that a filesystem will be able to grow 
later, but these parameters can be changed at any time by the filesystem's 
owner. Otherwise filesystems grow and shrink dynamically as needed. 



 
Figure 10.14 - (a) Traditional volumes and file systems. (b) a ZFS pool and file 

systems. 

10.8 Stable-Storage Implementation ( Optional ) 

 The concept of stable storage ( first presented in chapter 6 ) involves a storage 

medium in which data is never lost, even in the face of equipment failure in the 

middle of a write operation. 

 To implement this requires two ( or more ) copies of the data, with separate 

failure modes. 

 An attempted disk write results in one of three possible outcomes: 

1. The data is successfully and completely written. 

2. The data is partially written, but not completely. The last block written 

may be garbled. 

3. No writing takes place at all. 

 Whenever an equipment failure occurs during a write, the system must detect it, 

and return the system back to a consistent state. To do this requires two 

physical blocks for every logical block, and the following procedure: 



1. Write the data to the first physical block. 

2. After step 1 had completed, then write the data to the second physical 

block. 

3. Declare the operation complete only after both physical writes have 

completed successfully. 

 During recovery the pair of blocks is examined. 

o If both blocks are identical and there is no sign of damage, then no 

further action is necessary. 

o If one block contains a detectable error but the other does not, then the 

damaged block is replaced with the good copy. ( This will either undo 

the operation or complete the operation, depending on which block is 

damaged and which is undamaged. ) 

o If neither block shows damage but the data in the blocks differ, then 

replace the data in the first block with the data in the second block. ( 

Undo the operation. ) 

Because the sequence of operations described above is slow, stable storage usually 

includes NVRAM as a cache, and declares a write operation complete once it has 

been written to the NVRAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



File-System Interface 

10.1 File Concept 

10.1.1 File Attributes 

 Different OSes keep track of different file attributes, including: 

o Name - Some systems give special significance to names, and 

particularly extensions ( .exe, .txt, etc. ), and some do not. Some 

extensions may be of significance to the OS ( .exe ), and others 

only to certain applications ( .jpg ) 

o Identifier ( e.g. inode number ) 

o Type - Text, executable, other binary, etc. 

o Location - on the hard drive. 

o Size 

o Protection 

o Time & Date 

o User ID 

10.1.2 File Operations 

 The file ADT supports many common operations: 

o Creating a file 

o Writing a file 

o Reading a file 

o Repositioning within a file 

o Deleting a file 

o Truncating a file. 

 Most OSes require that files be opened before access and closed after all 

access is complete. Normally the programmer must open and close files 

explicitly, but some rare systems open the file automatically at first 

access. Information about currently open files is stored in an open file 

table, containing for example: 

o File pointer - records the current position in the file, for the next 

read or write access. 

o File-open count - How many times has the current file been 

opened ( simultaneously by different processes ) and not yet 

closed? When this counter reaches zero the file can be removed 

from the table. 

o Disk location of the file. 

o Access rights 



 Some systems provide support for file locking. 

o A shared lock is for reading only. 

o A exclusive lock is for writing as well as reading. 

o An advisory lock is informational only, and not enforced. ( A 

"Keep Out" sign, which may be ignored. ) 

o A mandatory lock is enforced. ( A truly locked door. ) 

o UNIX used advisory locks, and Windows uses mandatory locks. 

10.1.3 File Types 

 Windows ( and some other systems ) use special file extensions to 

indicate the type of each file: 

 

Common file types 



 Macintosh stores a creator attribute for each file, according to the 

program that first created it with the create( ) system call. 

 UNIX stores magic numbers at the beginning of certain files. ( 

Experiment with the "file" command, especially in directories such as 

/bin and /dev ) 

10.1.4 File Structure 

 Some files contain an internal structure, which may or may not be 

known to the OS. 

 For the OS to support particular file formats increases the size and 

complexity of the OS. 

 UNIX treats all files as sequences of bytes, with no further consideration 

of the internal structure. ( With the exception of executable binary 

programs, which it must know how to load and find the first executable 

statement, etc. ) 

 Macintosh files have two forks - a resource fork, and a data fork. The 

resource fork contains information relating to the UI, such as icons and 

button images, and can be modified independently of the data fork, 

which contains the code or data as appropriate. 

10.1.5 Internal File Structure 

 Disk files are accessed in units of physical blocks, typically 512 bytes or 

some power-of-two multiple thereof. ( Larger physical disks use larger 

block sizes, to keep the range of block numbers within the range of a 32-

bit integer. ) 

 Internally files are organized in units of logical units, which may be as 

small as a single byte, or may be a larger size corresponding to some 

data record or structure size. 

 The number of logical units which fit into one physical block determines 

its packing, and has an impact on the amount of internal fragmentation 

( wasted space ) that occurs. 

 As a general rule, half a physical block is wasted for each file, and the 

larger the block sizes the more space is lost to internal fragmentation. 

10.2 Access Methods 

10.2.1 Sequential Access 

 A sequential access file emulates magnetic tape operation, and generally 

supports a few operations: 



o read next - read a record and advance the tape to the next position. 

o write next - write a record and advance the tape to the next 

position. 

o rewind 

o skip n records - May or may not be supported. N may be limited 

to positive numbers, or may be limited to +/- 1. 

 

Sequential-access file 

10.2.2 Direct Access 

 Jump to any record and read that record. Operations supported include: 

o read n - read record number n. ( Note an argument is now 

required. ) 

o write n - write record number n. ( Note an argument is now 

required. ) 

o jump to record n - could be 0 or the end of file. 

o Query current record - used to return back to this record later. 

o Sequential access can be easily emulated using direct access. The 

inverse is complicated and inefficient. 

 

Simulation of sequential access on a direct access file 



10.2.3 Other Access Methods 

 An indexed access scheme can be easily built on top of a direct access 

system. Very large files may require a multi-tiered indexing scheme, i.e. 

indexes of indexes. 

 

Example of index and relative files 

10.3 Directory Structure 

10.3.1 Storage Structure 

 A disk can be used in its entirety for a file system. 

 Alternatively a physical disk can be broken up into multiple partitions, 

slices, or mini-disks, each of which becomes a virtual disk and can have 

its own filesystem. ( or be used for raw storage, swap space, etc. ) 

 Or, multiple physical disks can be combined into one volume, i.e. a 

larger virtual disk, with its own filesystem spanning the physical disks. 



 

A typical file system organization 

10.3.2 Directory Overview 

 Directory operations to be supported include: 

o Search for a file 

o Create a file - add to the directory 

o Delete a file - erase from the directory 

o List a directory - possibly ordered in different ways. 

o Rename a file - may change sorting order 

o Traverse the file system. 

10.3.3. Single-Level Directory 

 Simple to implement, but each file must have a unique name. 

 

Single-level directory 



10.3.4 Two-Level Directory 

 Each user gets their own directory space. 

 File names only need to be unique within a given user's directory. 

 A master file directory is used to keep track of each users directory, and 

must be maintained when users are added to or removed from the 

system. 

 A separate directory is generally needed for system ( executable ) files. 

 Systems may or may not allow users to access other directories besides 

their own 

o If access to other directories is allowed, then provision must be 

made to specify the directory being accessed. 

o If access is denied, then special consideration must be made for 

users to run programs located in system directories. A search 

path is the list of directories in which to search for executable 

programs, and can be set uniquely for each user. 

 
Two level directory structure 

10.3.5 Tree-Structured Directories 

 An obvious extension to the two-tiered directory structure, and the one 

with which we are all most familiar. 

 Each user / process has the concept of a current directory from which all 

( relative ) searches take place. 

 Files may be accessed using either absolute pathnames ( relative to the 

root of the tree ) or relative pathnames ( relative to the current 

directory. ) 

 Directories are stored the same as any other file in the system, except 

there is a bit that identifies them as directories, and they have some 

special structure that the OS understands. 



 One question for consideration is whether or not to allow the removal of 

directories that are not empty - Windows requires that directories be 

emptied first, and UNIX provides an option for deleting entire sub-trees. 

 
Tree-structured  directory structure 

10.3.6 Acyclic-Graph Directories 

 When the same files need to be accessed in more than one place in the 

directory structure ( e.g. because they are being shared by more than one 

user / process ), it can be useful to provide an acyclic-graph structure. 

( Note the directed arcs from parent to child. ) 

 UNIX provides two types of links for implementing the acyclic-graph 

structure. ( See "man ln" for more details. ) 

o A hard link ( usually just called a link ) involves multiple 

directory entries that both refer to the same file. Hard links are 

only valid for ordinary files in the same filesystem. 

o A symbolic link, that involves a special file, containing 

information about where to find the linked file. Symbolic links 

may be used to link directories and/or files in other filesystems, as 

well as ordinary files in the current filesystem. 



 Windows only supports symbolic links, termed shortcuts. 

 Hard links require a reference count, or link count for each file, keeping 

track of how many directory entries are currently referring to this file. 

Whenever one of the references is removed the link count is reduced, 

and when it reaches zero, the disk space can be reclaimed. 

 For symbolic links there is some question as to what to do with the 

symbolic links when the original file is moved or deleted: 

o One option is to find all the symbolic links and adjust them also. 

o Another is to leave the symbolic links dangling, and discover that 

they are no longer valid the next time they are used. 

o What if the original file is removed, and replaced with another file 

having the same name before the symbolic link is next used? 

 
Acyclic-Graph  directory structure 

10.3.7 General Graph Directory 

 If cycles are allowed in the graphs, then several problems can arise: 

o Search algorithms can go into infinite loops. One solution is to not 

follow links in search algorithms. ( Or not to follow symbolic 

links, and to only allow symbolic links to refer to directories. ) 



o Sub-trees can become disconnected from the rest of the tree and 

still not have their reference counts reduced to zero. Periodic 

garbage collection is required to detect and resolve this problem. ( 

chkdsk in DOS and fsck in UNIX search for these problems, 

among others, even though cycles are not supposed to be allowed 

in either system. Disconnected disk blocks that are not marked as 

free are added back to the file systems with made-up file names, 

and can usually be safely deleted. ) 

 
General graph directory 

10.4 File-System Mounting 

 The basic idea behind mounting file systems is to combine multiple file 

systems into one large tree structure. 

 The mount command is given a filesystem to mount and a mount point ( 

directory ) on which to attach it. 

 Once a file system is mounted onto a mount point, any further references to that 

directory actually refer to the root of the mounted file system. 

 Any files ( or sub-directories ) that had been stored in the mount point directory 

prior to mounting the new filesystem are now hidden by the mounted 

filesystem, and are no longer available. For this reason some systems only 

allow mounting onto empty directories. 



 Filesystems can only be mounted by root, unless root has previously configured 

certain filesystems to be mountable onto certain pre-determined mount points. ( 

E.g. root may allow users to mount floppy filesystems to /mnt or something 

like it. ) Anyone can run the mount command to see what filesystems are 

currently mounted. 

 Filesystems may be mounted read-only, or have other restrictions imposed. 

 
 



 
Mount point 

 The traditional Windows OS runs an extended two-tier directory structure, 

where the first tier of the structure separates volumes by drive letters, and a tree 

structure is implemented below that level. 

 Macintosh runs a similar system, where each new volume that is found is 

automatically mounted and added to the desktop when it is found. 

 More recent Windows systems allow filesystems to be mounted to any 

directory in the filesystem, much like UNIX. 

10.5 File Sharing 

10.5.1 Multiple Users 

 On a multi-user system, more information needs to be stored for each 

file: 

o The owner ( user ) who owns the file, and who can control its 

access. 

o The group of other user IDs that may have some special access to 

the file. 

o What access rights are afforded to the owner ( User ), the Group, 

and to the rest of the world ( the universe, a.k.a. Others. ) 



o Some systems have more complicated access control, allowing or 

denying specific accesses to specifically named users or groups. 

10.5.2 Remote File Systems 

 The advent of the Internet introduces issues for accessing files stored on 

remote computers 

o The original method was ftp, allowing individual files to be 

transported across systems as needed. Ftp can be either account 

and password controlled, or anonymous, not requiring any user 

name or password. 

o Various forms of distributed file systems allow remote file 

systems to be mounted onto a local directory structure, and 

accessed using normal file access commands. ( The actual files 

are still transported across the network as needed, possibly using 

ftp as the underlying transport mechanism. ) 

o The WWW has made it easy once again to access files on remote 

systems without mounting their filesystems, generally using 

( anonymous ) ftp as the underlying file transport mechanism. 

10.5.2.1 The Client-Server Model 

 When one computer system remotely mounts a filesystem that is 

physically located on another system, the system which physically 

owns the files acts as a server, and the system which mounts them 

is the client. 

 User IDs and group IDs must be consistent across both systems 

for the system to work properly. ( I.e. this is most applicable 

across multiple computers managed by the same organization, 

shared by a common group of users. ) 

 The same computer can be both a client and a server. ( E.g. cross-

linked file systems. ) 

 There are a number of security concerns involved in this model: 

o Servers commonly restrict mount permission to certain 

trusted systems only. Spoofing ( a computer pretending to 

be a different computer ) is a potential security risk. 

o Servers may restrict remote access to read-only. 

o Servers restrict which filesystems may be remotely 

mounted. Generally the information within those 

subsystems is limited, relatively public, and protected by 

frequent backups. 



 The NFS ( Network File System ) is a classic example of such a 

system. 

10.5.2.2 Distributed Information Systems 

 The Domain Name System, DNS, provides for a unique naming 

system across all of the Internet. 

 Domain names are maintained by the Network Information 

System, NIS, which unfortunately has several security issues. 

NIS+ is a more secure version, but has not yet gained the same 

widespread acceptance as NIS. 

 Microsoft's Common Internet File System, CIFS, establishes 

a network login for each user on a networked system with shared 

file access. Older Windows systems used domains, and newer 

systems ( XP, 2000 ), use active directories. User names must 

match across the network for this system to be valid. 

 A newer approach is the Lightweight Directory-Access Protocol, 

LDAP, which provides a secure single sign-on for all users to 

access all resources on a network. This is a secure system which is 

gaining in popularity, and which has the maintenance advantage 

of combining authorization information in one central location. 

10.5.2.3 Failure Modes 

 When a local disk file is unavailable, the result is generally known 

immediately, and is generally non-recoverable. The only 

reasonable response is for the response to fail. 

 However when a remote file is unavailable, there are many 

possible reasons, and whether or not it is unrecoverable is not 

readily apparent. Hence most remote access systems allow for 

blocking or delayed response, in the hopes that the remote system 

( or the network ) will come back up eventually. 

10.5.3 Consistency Semantics 

 Consistency Semantics deals with the consistency between the views of 

shared files on a networked system. When one user changes the file, 

when do other users see the changes? 

 At first glance this appears to have all of the synchronization issues 

discussed in Chapter 6. Unfortunately the long delays involved in 

network operations prohibit the use of atomic operations as discussed in 

that chapter. 



10.5.3.1 UNIX Semantics 

 The UNIX file system uses the following semantics: 

o Writes to an open file are immediately visible to any other 

user who has the file open. 

o One implementation uses a shared location pointer, which 

is adjusted for all sharing users. 

 The file is associated with a single exclusive physical resource, 

which may delay some accesses. 

10.5.3.2 Session Semantics 

 The Andrew File System, AFS uses the following semantics: 

o Writes to an open file are not immediately visible to other 

users. 

o When a file is closed, any changes made become available 

only to users who open the file at a later time. 

 According to these semantics, a file can be associated with 

multiple ( possibly different ) views. Almost no constraints are 

imposed on scheduling accesses. No user is delayed in reading or 

writing their personal copy of the file. 

 AFS file systems may be accessible by systems around the world. 

Access control is maintained through ( somewhat ) complicated 

access control lists, which may grant access to the entire world 

( literally ) or to specifically named users accessing the files from 

specifically named remote environments. 

10.5.3.3 Immutable-Shared-Files Semantics 

 Under this system, when a file is declared as shared by its creator, 

it becomes immutable and the name cannot be re-used for any 

other resource. Hence it becomes read-only, and shared access is 

simple. 

10.6 Protection 

 Files must be kept safe for reliability ( against accidental damage ), and 

protection ( against deliberate malicious access. ) The former is usually 

managed with backup copies. This section discusses the latter. 

 One simple protection scheme is to remove all access to a file. However this 

makes the file unusable, so some sort of controlled access must be arranged. 



10.6.1 Types of Access 

 The following low-level operations are often controlled: 

o Read - View the contents of the file 

o Write - Change the contents of the file. 

o Execute - Load the file onto the CPU and follow the instructions 

contained therein. 

o Append - Add to the end of an existing file. 

o Delete - Remove a file from the system. 

o List -View the name and other attributes of files on the system. 

 Higher-level operations, such as copy, can generally be performed 

through combinations of the above. 

10.6.2 Access Control 

 One approach is to have complicated Access Control Lists, ACL, which 

specify exactly what access is allowed or denied for specific users or 

groups. 

o The AFS uses this system for distributed access. 

o Control is very finely adjustable, but may be complicated, 

particularly when the specific users involved are unknown. ( AFS 

allows some wild cards, so for example all users on a certain 

remote system may be trusted, or a given username may be trusted 

when accessing from any remote system. ) 

 UNIX uses a set of 9 access control bits, in three groups of three. These 

correspond to R, W, and X permissions for each of the Owner, Group, 

and Others. ( See "man chmod" for full details. ) The RWX bits control 

the following privileges for ordinary files and directories: 

bit Files Directories 

R 
Read ( view ) 

file contents. 
Read directory contents. Required to get a listing of the directory. 

W 

Write 

( change ) file 

contents. 

Change directory contents. Required to create or delete files. 

X 

Execute file 

contents as a 

program. 

Access detailed directory information. Required to get a long listing, 

or to access any specific file in the directory. Note that if a user has 

X but not R permissions on a directory, they can still access specific 

files, but only if they already know the name of the file they are 

trying to access. 



 In addition there are some special bits that can also be applied: 

o The set user ID ( SUID ) bit and/or the set group ID ( SGID ) bits 

applied to executable files temporarily change the identity of 

whoever runs the program to match that of the owner / group of 

the executable program. This allows users running specific 

programs to have access to files ( while running that program ) 

to which they would normally be unable to access. Setting of 

these two bits is usually restricted to root, and must be done with 

caution, as it introduces a potential security leak. 

o The sticky bit on a directory modifies write permission, allowing 

users to only delete files for which they are the owner. This allows 

everyone to create files in /tmp, for example, but to only delete 

files which they have created, and not anyone else's. 

o The SUID, SGID, and sticky bits are indicated with an S, S, and T 

in the positions for execute permission for the user, group, and 

others, respectively. If the letter is lower case, ( s, s, t ), then the 

corresponding execute permission is not also given. If it is upper 

case, ( S, S, T ), then the coresponding execute permission IS 

given. 

o The numeric form of chmod is needed to set these advanced bits. 



 

windows XP access control list management 

 

  

 Windows adjusts files access through a simple GUI: 

  



 



Figure 10.15 

  

10.6.3 Other Protection Approaches and Issues 

 Some systems can apply passwords, either to individual files, or to 

specific sub-directories, or to the entire system. There is a trade-off 

between the number of passwords that must be maintained ( and 

remembered by the users ) and the amount of information that is 

vulnerable to a lost or forgotten password. 

 Older systems which did not originally have multi-user file access 

permissions ( DOS and older versions of Mac ) must now 

be retrofitted if they are to share files on a network. 

 Access to a file requires access to all the files along its path as well. In a 

cyclic directory structure, users may have different access to the same 

file accessed through different paths. 

 Sometimes just the knowledge of the existence of a file of a certain name 

is a security ( or privacy ) concern. Hence the distinction between the R 

and X bits on UNIX directories. 

 

  

  

 

 

 

 

 

 

 

 

 



File-System Implementation 

11.1 File-System Structure 

 Hard disks have two important properties that make them suitable for 

secondary storage of files in file systems: (1) Blocks of data can be rewritten in 

place, and (2) they are direct access, allowing any block of data to be accessed 

with only ( relatively ) minor movements of the disk heads and rotational 

latency. ( See Chapter 12 ) 

 Disks are usually accessed in physical blocks, rather than a byte at a time. 

Block sizes may range from 512 bytes to 4K or larger. 

 File systems organize storage on disk drives, and can be viewed as a layered 

design: 

o At the lowest layer are the physical devices, consisting of the magnetic 

media, motors & controls, and the electronics connected to them and 

controlling them. Modern disk put more and more of the electronic 

controls directly on the disk drive itself, leaving relatively little work for 

the disk controller card to perform. 

o I/O Control consists of device drivers, special software programs ( often 

written in assembly ) which communicate with the devices by reading 

and writing special codes directly to and from memory addresses 

corresponding to the controller card's registers. Each controller card 

( device ) on a system has a different set of addresses ( registers, 

a.k.a. ports ) that it listens to, and a unique set of command codes and 

results codes that it understands. 

o The basic file system level works directly with the device drivers in 

terms of retrieving and storing raw blocks of data, without any 

consideration for what is in each block. Depending on the system, blocks 

may be referred to with a single block number, ( e.g. block # 234234 ), 

or with head-sector-cylinder combinations. 

o The file organization module knows about files and their logical blocks, 

and how they map to physical blocks on the disk. In addition to 

translating from logical to physical blocks, the file organization module 

also maintains the list of free blocks, and allocates free blocks to files as 

needed. 

o The logical file system deals with all of the meta data associated with a 

file ( UID, GID, mode, dates, etc ), i.e. everything about the file except 

the data itself. This level manages the directory structure and the 

mapping of file names to file control blocks, FCBs, which contain all of 

the meta data as well as block number information for finding the data 

on the disk. 



 The layered approach to file systems means that much of the code can be used 

uniformly for a wide variety of different file systems, and only certain layers 

need to be filesystem specific. Common file systems in use include the UNIX 

file system, UFS, the Berkeley Fast File System, FFS, Windows systems FAT, 

FAT32, NTFS, CD-ROM systems ISO 9660, and for Linux the extended file 

systems ext2 and ext3 ( among 40 others supported. ) 

 

Layered file system 

11.2 File-System Implementation 

11.2.1 Overview 

 File systems store several important data structures on the disk: 

o A boot-control block, ( per volume ) a.k.a. the boot block in 

UNIX or the partition boot sector in Windows contains 

information about how to boot the system off of this disk. This 

will generally be the first sector of the volume if there is a 

bootable system loaded on that volume, or the block will be left 

vacant otherwise. 



o A volume control block, ( per volume ) a.k.a. the master file 

table in UNIX or the superblock in Windows, which contains 

information such as the partition table, number of blocks on each 

filesystem, and pointers to free blocks and free FCB blocks. 

o A directory structure ( per file system ), containing file names and 

pointers to corresponding FCBs. UNIX uses inode numbers, and 

NTFS uses a master file table. 

o The File Control Block, FCB, ( per file ) containing details about 

ownership, size, permissions, dates, etc. UNIX stores this 

information in inodes, and NTFS in the master file table as a 

relational database structure. 

 

A typical file-control block 

 There are also several key data structures stored in memory: 

o An in-memory mount table. 

o An in-memory directory cache of recently accessed directory 

information. 

o A system-wide open file table, containing a copy of the FCB for 

every currently open file in the system, as well as some other 

related information. 

o A per-process open file table, containing a pointer to the system 

open file table as well as some other information. ( For example 

the current file position pointer may be either here or in the 

system file table, depending on the implementation and whether 

the file is being shared or not. ) 

 Figure 11.3 illustrates some of the interactions of file system 

components when files are created and/or used: 

o When a new file is created, a new FCB is allocated and filled out 

with important information regarding the new file. The 



appropriate directory is modified with the new file name and FCB 

information. 

o When a file is accessed during a program, the open( ) system call 

reads in the FCB information from disk, and stores it in the 

system-wide open file table. An entry is added to the per-process 

open file table referencing the system-wide table, and an index 

into the per-process table is returned by the open( ) system call. 

UNIX refers to this index as a file descriptor, and Windows refers 

to it as a file handle. 

o If another process already has a file open when a new request 

comes in for the same file, and it is sharable, then a counter in the 

system-wide table is incremented and the per-process table is 

adjusted to point to the existing entry in the system-wide table. 

o When a file is closed, the per-process table entry is freed, and the 

counter in the system-wide table is decremented. If that counter 

reaches zero, then the system wide table is also freed. Any data 

currently stored in memory cache for this file is written out to disk 

if necessary. 



 

In-memory file-system structures (a)File open (b) file read 

11.2.2 Partitions and Mounting 

 Physical disks are commonly divided into smaller units called partitions. 

They can also be combined into larger units, but that is most commonly 

done for RAID installations and is left for later chapters. 

 Partitions can either be used as raw devices ( with no structure imposed 

upon them ), or they can be formatted to hold a filesystem ( i.e. 

populated with FCBs and initial directory structures as appropriate. ) 

Raw partitions are generally used for swap space, and may also be used 

for certain programs such as databases that choose to manage their own 

disk storage system. Partitions containing filesystems can generally only 

be accessed using the file system structure by ordinary users, but can 

often be accessed as a raw device also by root. 



 The boot block is accessed as part of a raw partition, by the boot 

program prior to any operating system being loaded. Modern boot 

programs understand multiple OSes and filesystem formats, and can give 

the user a choice of which of several available systems to boot. 

 The root partition contains the OS kernel and at least the key portions of 

the OS needed to complete the boot process. At boot time the root 

partition is mounted, and control is transferred from the boot program to 

the kernel found there. ( Older systems required that the root partition lie 

completely within the first 1024 cylinders of the disk, because that was 

as far as the boot program could reach. Once the kernel had control, then 

it could access partitions beyond the 1024 cylinder boundary. ) 

 Continuing with the boot process, additional filesystems get mounted, 

adding their information into the appropriate mount table structure. As a 

part of the mounting process the file systems may be checked for errors 

or inconsistencies, either because they are flagged as not having been 

closed properly the last time they were used, or just for general 

principals. Filesystems may be mounted either automatically or 

manually. In UNIX a mount point is indicated by setting a flag in the in-

memory copy of the inode, so all future references to that inode get re-

directed to the root directory of the mounted filesystem. 

11.2.3 Virtual File Systems 

 Virtual File Systems, VFS, provide a common interface to multiple 

different filesystem types. In addition, it provides for a unique identifier 

( vnode ) for files across the entire space, including across all filesystems 

of different types. ( UNIX inodes are unique only across a single 

filesystem, and certainly do not carry across networked file systems. ) 

 The VFS in Linux is based upon four key object types: 

o The inode object, representing an individual file 

o The file object, representing an open file. 

o The superblock object, representing a filesystem. 

o The dentry object, representing a directory entry. 

 Linux VFS provides a set of common functionalities for each filesystem, 

using function pointers accessed through a table. The same functionality 

is accessed through the same table position for all filesystem types, 

though the actual functions pointed to by the pointers may be filesystem-

specific. See /usr/include/linux/fs.h for full details. Common operations 

provided include open( ), read( ), write( ), and mmap( ). 



 

Schematic view of virtual file system 

11.3 Directory Implementation 

 Directories need to be fast to search, insert, and delete, with a minimum of 

wasted disk space. 

11.3.1 Linear List 

 A linear list is the simplest and easiest directory structure to set up, but it 

does have some drawbacks. 

 Finding a file ( or verifying one does not already exist upon creation ) 

requires a linear search. 

 Deletions can be done by moving all entries, flagging an entry as 

deleted, or by moving the last entry into the newly vacant position. 

 Sorting the list makes searches faster, at the expense of more complex 

insertions and deletions. 



 A linked list makes insertions and deletions into a sorted list easier, with 

overhead for the links. 

 More complex data structures, such as B-trees, could also be considered. 

11.3.2 Hash Table 

 A hash table can also be used to speed up searches. 

 Hash tables are generally implemented in addition to a linear or other 

structure 

11.4 Allocation Methods 

 There are three major methods of storing files on disks: contiguous, linked, and 

indexed. 

11.4.1 Contiguous Allocation 

 Contiguous Allocation requires that all blocks of a file be kept together 

contiguously. 

 Performance is very fast, because reading successive blocks of the same 

file generally requires no movement of the disk heads, or at most one 

small step to the next adjacent cylinder. 

 Storage allocation involves the same issues discussed earlier for the 

allocation of contiguous blocks of memory ( first fit, best fit, 

fragmentation problems, etc. ) The distinction is that the high time 

penalty required for moving the disk heads from spot to spot may now 

justify the benefits of keeping files contiguously when possible. 

 ( Even file systems that do not by default store files contiguously can 

benefit from certain utilities that compact the disk and make all files 

contiguous in the process. ) 

 Problems can arise when files grow, or if the exact size of a file is 

unknown at creation time: 

o Over-estimation of the file's final size increases external 

fragmentation and wastes disk space. 

o Under-estimation may require that a file be moved or a process 

aborted if the file grows beyond its originally allocated space. 

o If a file grows slowly over a long time period and the total final 

space must be allocated initially, then a lot of space becomes 

unusable before the file fills the space. 

 A variation is to allocate file space in large contiguous chunks, 

called extents. When a file outgrows its original extent, then an 

additional one is allocated. ( For example an extent may be the size of a 



complete track or even cylinder, aligned on an appropriate track or 

cylinder boundary. ) The high-performance files system Veritas uses 

extents to optimize performance. 

 

Contiguous allocation of disk space 

11.4.2 Linked Allocation 

 Disk files can be stored as linked lists, with the expense of the storage 

space consumed by each link. ( E.g. a block may be 508 bytes instead of 

512. ) 

 Linked allocation involves no external fragmentation, does not require 

pre-known file sizes, and allows files to grow dynamically at any time. 

 Unfortunately linked allocation is only efficient for sequential access 

files, as random access requires starting at the beginning of the list for 

each new location access. 

 Allocating clusters of blocks reduces the space wasted by pointers, at the 

cost of internal fragmentation. 



 Another big problem with linked allocation is reliability if a pointer is 

lost or damaged. Doubly linked lists provide some protection, at the cost 

of additional overhead and wasted space. 

 

Linked allocation of disk space 

 The File Allocation Table, FAT, used by DOS is a variation of linked 

allocation, where all the links are stored in a separate table at the 

beginning of the disk. The benefit of this approach is that the FAT table 

can be cached in memory, greatly improving random access speeds. 



 

11.4.3 Indexed Allocation 

 Indexed Allocation combines all of the indexes for accessing each file 

into a common block ( for that file ), as opposed to spreading them all 

over the disk or storing them in a FAT table. 



 

 Some disk space is wasted ( relative to linked lists or FAT tables ) 

because an entire index block must be allocated for each file, regardless 

of how many data blocks the file contains. This leads to questions of 

how big the index block should be, and how it should be implemented. 

There are several approaches: 

o Linked Scheme - An index block is one disk block, which can be 

read and written in a single disk operation. The first index block 

contains some header information, the first N block addresses, and 

if necessary a pointer to additional linked index blocks. 

o Multi-Level Index - The first index block contains a set of 

pointers to secondary index blocks, which in turn contain pointers 

to the actual data blocks. 

o Combined Scheme - This is the scheme used in UNIX inodes, in 

which the first 12 or so data block pointers are stored directly in 

the inode, and then singly, doubly, and triply indirect pointers 

provide access to more data blocks as needed. ( See below. ) The 

advantage of this scheme is that for small files ( which many are ), 

the data blocks are readily accessible ( up to 48K with 4K block 



sizes ); files up to about 4144K ( using 4K blocks ) are accessible 

with only a single indirect block ( which can be cached ), and 

huge files are still accessible using a relatively small number of 

disk accesses ( larger in theory than can be addressed by a 32-bit 

address, which is why some systems have moved to 64-bit file 

pointers. ) 

 

11.4.4 Performance 

 The optimal allocation method is different for sequential access files 

than for random access files, and is also different for small files than for 

large files. 

 Some systems support more than one allocation method, which may 

require specifying how the file is to be used ( sequential or random 

access ) at the time it is allocated. Such systems also provide conversion 

utilities. 



 Some systems have been known to use contiguous access for small files, 

and automatically switch to an indexed scheme when file sizes surpass a 

certain threshold. 

 And of course some systems adjust their allocation schemes ( e.g. block 

sizes ) to best match the characteristics of the hardware for optimum 

performance. 

11.5 Free-Space Management 

 Another important aspect of disk management is keeping track of and 

allocating free space. 

11.5.1 Bit Vector 

 One simple approach is to use a bit vector, in which each bit represents a 

disk block, set to 1 if free or 0 if allocated. 

 Fast algorithms exist for quickly finding contiguous blocks of a given 

size 

 The down side is that a 40GB disk requires over 5MB just to store the 

bitmap. ( For example. ) 

11.5.2 Linked List 

 A linked list can also be used to keep track of all free blocks. 

 Traversing the list and/or finding a contiguous block of a given size are 

not easy, but fortunately are not frequently needed operations. Generally 

the system just adds and removes single blocks from the beginning of the 

list. 

 The FAT table keeps track of the free list as just one more linked list on 

the table. 



 

11.5.3 Grouping 

 A variation on linked list free lists is to use links of blocks of indices of 

free blocks. If a block holds up to N addresses, then the first block in the 

linked-list contains up to N-1 addresses of free blocks and a pointer to 

the next block of free addresses. 

11.5.4 Counting 

 When there are multiple contiguous blocks of free space then the system 

can keep track of the starting address of the group and the number of 

contiguous free blocks. As long as the average length of a contiguous 

group of free blocks is greater than two this offers a savings in space 

needed for the free list. ( Similar to compression techniques used for 

graphics images when a group of pixels all the same color is 

encountered. ) 

11.5.5 Space Maps ( New ) 



 Sun's ZFS file system was designed for HUGE numbers and sizes of 

files, directories, and even file systems. 

 The resulting data structures could be VERY inefficient if not 

implemented carefully. For example, freeing up a 1 GB file on a 1 TB 

file system could involve updating thousands of blocks of free list bit 

maps if the file was spread across the disk. 

 ZFS uses a combination of techniques, starting with dividing the disk up 

into ( hundreds of ) metaslabs of a manageable size, each having their 

own space map. 

 Free blocks are managed using the counting technique, but rather than 

write the information to a table, it is recorded in a log-structured 

transaction record. Adjacent free blocks are also coalesced into a larger 

single free block. 

 An in-memory space map is constructed using a balanced tree data 

structure, constructed from the log data. 

 The combination of the in-memory tree and the on-disk log provide for 

very fast and efficient management of these very large files and free 

blocks. 
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