
UNIT IV

Deadlocks: System Model, deadlock characterization, Methods of handling Deadlocks, Deadlock prevention,
Detection and Avoidance, Recovery from deadlock.

Mass-storage structure: Overview of Mass-storage structure, Disk structure, Disk attachment, Disk scheduling,
Swap-space management, RAID structure, Stable-storage implementation.

File system Interface: The concept of a file, Access Methods, Directory and Disk structure, File system mounting,
File sharing, Protection.

File system Implementation: File-system structure, File-system Implementation, Directory Implementation, Allocation
Methods, Free-Space management.

DEADLOCKS

 Definition

A set of two or more processes are deadlocked if they are blocked
(i.e., in the waiting state) each holding a resource and waiting to
acquire a resource held by another process in the set.

or

A process is deadlocked if it is waiting for an event which is never
going to happen.

Example:

 a system has two tape drives
 two processes are deadlocked if each holds one tape drive

and has requested the other

Example: semaphores A and B, each initialized to 1:
 P_0 P_1

 --- ---

 A.wait(); B.wait();

 B.wait(); A.wait();

 A.signal(); B.signal();

 B.signal(); A.signal();

Deadlock depends on the dynamics of the execution.
Illustrates that it is difficult to identify and test for deadlocks which
may occur only under certain circumstances.

System model:

 resource types: R1, R2, ..., Rn
 each resource R has W i instances
 each process utilizes a resource as follows:

 // request (e.g., open() system call)

 // use

 // release (e.g., close() system call)

Any instance of a resource type can be used to satisfy a request of
that resource.

Conditions Necessary for Deadlock

All of the following four necessary conditions must hold
simultaneously for deadlock to occur:

 mutual exclusion: only one process can use a resource at a
time.

 hold and wait: a process holding at least one resource is
waiting to acquire additional resources which are currently
held by other processes.

 no preemption: a resource can only be released voluntarily

by the process holding it.
 circular wait: a cycle of process requests exists (i.e., P0 is

waiting for a resource hold by P1 who is waiting for a resource
held by Pj ... who is waiting for a resource held by P(n-1) which
is waiting for a resource held by Pn which is waiting for a
resource held by P0).

Circular wait implies the hold and wait condition. Therefore, these
conditions are not completely independent.

Resource Allocation Graph Syntax

A resource allocation graph contains a set of vertices V and a set of
edges E.

V is partitioned into two types:

 P = {P1, P2, ..., Pn} is the set of all processes.

 R = {R1, R2, ..., Rm} is the set of all resources.

A request is represented by a directed edge from Pi to Rj.
An assignment is represented by a directed edge from Rj to Pi.

 resource type with four instances:

 Pi requests an instance of Rj

 Pi is holding an instance of Rj

Sample Resource Allocation Graphs

 resource allocation graph without deadlock:

o P1 wants a resource held by P2
o no process is requesting an instance of R4

(regenerated from [OSC8] Fig. 7.2 on p. 288)

 resource allocation graph with a cycle and deadlock:

(regenerated from [OSC8] Fig. 7.3 on p. 289)

 resource allocation graph with a cycle but no deadlock:

(regenerated from [OSC8] Fig. 7.4 on p. 289)

Possibility of Deadlock

If a resource allocation graph contains no cycles, then no process is
deadlocked.

If a resource allocation graph contains a cycle, then a
deadlock may exist.

Therefore, a cycle means deadlock is possible, but not
necessarily present.

A cycle is not sufficient proof of the presence of deadlock. A cycle is
a necessary condition for deadlock, but not a sufficient condition for
deadlock.

Resource Allocation Graph Summary

 if a resource allocation graph does not contain a cycle, then
there is absolutely no possibility of deadlock

 if a resource allocation graph contains a cycle, then there is
the possibility of deadlock

 if each resource type has exactly one instance, then a cycle
implies that deadlock has occurred

 if the cycle involves only a set of resource types, each of which
has only a single instance, then a deadlock has occurred

 if all instances of a resource are allocated to a process in a
cycle, then there is deadlock

Methods for Handling Deadlock

The following are methods for addressing the possibility of deadlock:

 ensure that the system never enters a deadlocked state:
o deadlock prevention
o deadlock avoidance

 deadlock detection and recovery: allow the system to enter a
deadlocked state, then deal with and eliminate the problem

 ignore the problem: approached used by many operating
systems including UNIX and Windows, and the Java VM

Deadlock Prevention

Restrain the ways resource requests are made so to prevent one of
the four conditions necessary for deadlock.

 prevent mutual exclusion

o use only sharable resources (e.g., a read-only file)
o impossible for practical systems

 prevent hold and wait
o methods

 preallocate
 do not pick up one chopstick if you cannot

pick up the other
 for a process that copies data from DVD

drive to a file on disk and then prints it
from there:

1. request DVD drive
2. request disk file
3. request printer

 all system calls requesting resources must
proceed all other system calls

 a process can request resources only when it
has none

1. request DVD drive and disk file
2. release DVD drive and disk file
3. request disk file and printer (no guarantee

data will still be there)

http://perugini.cps.udayton.edu/teaching/courses/cps346/lecture_notes/deadlock.html#NecessaryConditions

4. release disk file and printer

 inefficient
 starvation possible

 prevent no preemption (i.e., allow preemption, and permit
the OS to take away resources from a process)

 when a process must wait, it must release its resources
 some resources cannot be feasibly preempted (e.g.,

printers, tape drives)

 prevent circular wait

 impose a total ordering on resources
 only allow requests in an increasing order

Usually a deadlock prevention approach is simply unreasonable.

Deadlock Avoidance

This requires that the system has some information available up
front. Each process declares the maximum number of resources of
each type which it may need. Dynamically examine the resource
allocation state to ensure that there can never be a circular-wait
condition.

The system's resource-allocation state is defined by the number of
available and allocated resources, and the maximum possible
demands of the processes. When a process requests an available
resource, the system must decide if immediate allocation leaves the
system in a safe state.

The system is in a safe state if there exists a safe sequence of all
processes:

Sequence < P1, P2, ... Pn > is safe for the current allocation state if,
for each Pi, the resources which Pi can still request can be satisfied
by

 the currently available resources plus

 the resources held by all of the Pj's, where j < i.

If the system is in a safe state, there can be no deadlock. If the
system is in an unsafe state, there is the possibility of deadlock.

Example: consider a system with 12 magnetic tapes and 3

processes (P0, P1, and P2):

available =

3

Process Maximum Needs Holding Needs

P0 10 5 5

P1 4 2 2

P2 9 2 7

Is the system in a safe state? If so, which sequence satisfies the
safety criteria?

available =

2

Process Maximum Needs Holding Needs

P0 10 5 5

P1 4 2 2

P2 9 3 6

Is the system in a safe state? If so, which sequence satisfies the
safety criteria?

In this scheme, a process which requests a resource that is currently
available, may still have to wait. Thus, resource utilization may be
lower than it would otherwise be.

Deadlock Avoidance Algorithms

Two deadlock avoidance algorithms:

 resource-allocation graph algorithm
 Banker's algorithm

Resource-allocation graph algorithm

 only applicable when we only have 1 instance of each
resource type

 claim edge (dotted edge), like a future request edge
 when a process requests a resource, the claim edge is

converted to a request edge
 when a process releases a resource, the assignment edge is

converted to a claim edge
 cycle detection: O(n²)

Banker's Algorithm

 a classic deadlock avoidance algorithm
 more general than resource-allocation graph algorithm

(handles multiple instances of each resource type), but
 is less efficient

Resource-allocations graphs for deadlock
avoidance

(regenerated from [OSC8] Fig. 7.6 on p. 297)

(regenerated from [OSC8] Fig. 7.7 on p. 297)

Banker's Algorithm

We call Banker's algorithm when a request for R is made. Let n be

the number of processes in the system, and m be the number of

resource types.

Define:

 available[m]: the number of units of R currently unallocated

(e.g., available[3] = 2)

 max[n][m]: describes the maximum demands of each process

(e.g., max[3][1] = 2)

 allocation[n][m]: describes the current allocation status (

e.g., allocation[5][1] = 3)

 need[n][m]: describes the remaining possible need

(i.e., need[i][j] = max[i][j] - allocation[i][j])

Resource-request algorithm:

Define:

 request[n][m]: describes the current outstanding requests of

all processes (e.g., request[2][1] = 3)

1. If request[i][j] <= need[i][j], to to step 2; otherwise, raise
an error condition.

2. If request[i][j] > available[j], then the process must wait.

3. Otherwise, pretend to allocate the requested resources to Pi :

4. available[j] = available[j] - request[i][j]
5. allocation[i][j] = allocation[i][j] +

request[i][j]

 need[i][j] = need[i][j] - request[i][j]

Once the resources are allocated, check to see if the system
state is safe. If unsafe, the process must wait and the old
resource-allocated state is restored.

Safety algorithm (to check for a safe state):

1. Let work be an integer array of length m, initialized

to available.

Let finish be a boolean array of length n, initialized to false.

2. Find an i such that both:
o finish[i] == false
o need[i] <= work

If no such i exists, go to step 4

3. work = work + allocation[i];
finish[i] = true;

Go to step 2

4. If finish[i] == true for all i, then the system is in a safe

state, otherwise unsafe.

Run-time complexity: O(m × n²).

Example: consider a system with 5 processes (P0 ... P4) and 3

resources types (A(10) B(5) C(7))

resource-allocation state at time t0:

Process Allocation Max Need Available
 A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Is the system in a safe state? If so, which sequence satisfies the
safety criteria?

< P1, P3, P4, P2, P0 >

Now suppose, P1 requests an additional instance of A and 2 more
instances of type C.

request[1] = (1,0,2)

1. check if request[1] <= need[i] (yes)

2. check if request[1] <= available[i] (yes)

3. do pretend updates to the state

Process Allocation Max Need Available
 A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Is the system in a safe state? If so, which sequence satisfies the
safety criteria?

<P1, P3, P4, P0, P2>

Hence, we immediately grant the request.

Will a request of (3,3,0) by P4 be granted?

Will a request of (0,2,0) by P0 be granted?

Deadlock Detection

 requires an algorithm which examines the state of the system
to determine whether a deadlock has occurred

 requires overhead
o run-time cost of maintaining necessary information and

executing the detection algorithm

o potential losses inherent in recovering from deadlock

Single instance of each resource type

 wait-graph
 Pi → Pj = Pi > Rq and Rq → Pj
 detect cycle: O(n²)

 overhead: maintain the graph + invoke algorithm

Resource-allocations graphs for deadlock detection

resource-allocation graph:

corresponding wait-for graph:

(regenerated from [OSC8] Fig. 7.8 on p. 302)

Multiple instances of a resource type: use an algorithm similar to
Banker's, which simply investigates every possible allocation
sequence for the processes which remain to be completed.

Define:

 available[m]
 allocation[n][m]
 request[n][m]

with their usual semantics.

Algorithm:

1. Let work be an integer array of length m, initialized

to available.

Let finish be a boolean array of length n.

For all i, if allocation[i] != 0, then finish[i] = false;

Otherwise finish[i] = true.

2. Find an i such that both

o finish[i] == false // Pi is currently not involved in a

deadlock

o request[i] <= work

If no such i exists, go to step 4

3. // reclaim the resources of process Pi
work = work + allocation[i];

finish[i] = true;

Go to step 2

4. If finish[i] == false for some i,
Then the system is in a deadlocked state.
Moreover, if finish[i] == false, then process Pi is

deadlocked.

Run-time complexity: O(m × n²).

Example: consider a system with 5 processes (P0 .. P4) and 3

resources types (A(7) B(2) C(6))

resource-allocation state at time t0:

Process Allocation Request Available
 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Is the system in a deadlocked state?

If not, which sequence results in finish[i] == true for all i ?

< P0, P2, P3, P1, P4 >

Now suppose, P2 requests an additional instance of C:

Process Allocation Request Available
 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Is the system in a deadlocked state? Yes.

If not, which sequence results in finish[i] == true for all i ?

Although we can reclaim the resources held by P0, the number of
available resources is insufficient to fulfill the requests of the other
processes.

Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4.

When should we invoke the detection algorithm? Depends on:

 how often is a deadlock likely to occur
 how many processes will be affected by deadlock when it

happens

If deadlocks occur frequently, then the algorithm should be invoked
frequently.

Deadlocks only occur when some process makes a request which
cannot be granted (if this request is the completes a chain of waiting
processes).

 Extreme: invoke the algorithm every time a request is denied
 Alternative: invoke the algorithm at less frequent time

intervals:
o once per hour
o whenever CPU utilization < 40%
o disadvantage: cannot determine exactly which process

'caused' the deadlock

Deadlock Recovery

How to deal with deadlock:

 inform operator and let them decide how to deal with it
manually

 let the system recover from the deadlock automatically:

o abort or more of the deadlocked processes to break the
circular wait

o preempt some resources from one or more of the
processes to break the circular wait

Process termination

Aborting a process is not easy; involves clean-up (e.g., file, printer).

 abort all deadlocked processes (disadvantage: wasteful)
 abort one process at a time until the circular wait is eliminated

o disadvantage: lot of overhead; must re-run algorithm
after each kill

o how to determine which process to terminate? minimize
cost

 priority of the process
 how long has it executed? how much more time

does it need?
 how many and what type of resources has the

process used?
 how many more resources will the process need

to complete?
 how many processes will need to be terminated?
 is the process interactive or batch?

Resource Preemption

Incrementally preempt and re-allocate resources until the circular wait
is broken.

 selecting a victim (see above)
 rollback: what should be done with process which lost the

resource?
clearly it cannot continue; must rollback to a safe state (???)
=> total rollback

 starvation: pick victim only small (finite) number of times; use
number of rollbacks in decision

Mass-Storage Structure

10.1 Overview of Mass-Storage Structure

10.1.1 Magnetic Disks

 Traditional magnetic disks have the following basic structure:

o One or more platters in the form of disks covered with magnetic

media. Hard disk platters are made of rigid metal, while "floppy"

disks are made of more flexible plastic.

o Each platter has two working surfaces. Older hard disk drives

would sometimes not use the very top or bottom surface of a stack

of platters, as these surfaces were more susceptible to potential

damage.

o Each working surface is divided into a number of concentric rings

called tracks. The collection of all tracks that are the same

distance from the edge of the platter, (i.e. all tracks immediately

above one another in the following diagram) is called a cylinder.

o Each track is further divided into sectors, traditionally containing

512 bytes of data each, although some modern disks occasionally

use larger sector sizes. (Sectors also include a header and a

trailer, including checksum information among other things.

Larger sector sizes reduce the fraction of the disk consumed by

headers and trailers, but increase internal fragmentation and the

amount of disk that must be marked bad in the case of errors.)

o The data on a hard drive is read by read-write heads. The standard

configuration (shown below) uses one head per surface, each on

a separate arm, and controlled by a common arm assembly which

moves all heads simultaneously from one cylinder to another. (

Other configurations, including independent read-write heads,

may speed up disk access, but involve serious technical

difficulties.)

o The storage capacity of a traditional disk drive is equal to the

number of heads (i.e. the number of working surfaces), times the

number of tracks per surface, times the number of sectors per

track, times the number of bytes per sector. A particular physical

block of data is specified by providing the head-sector-cylinder

number at which it is located.

Figure 10.1 - Moving-head disk mechanism.

 In operation the disk rotates at high speed, such as 7200 rpm (120

revolutions per second.) The rate at which data can be transferred from

the disk to the computer is composed of several steps:

o The positioning time, a.k.a. the seek time or random access

time is the time required to move the heads from one cylinder to

another, and for the heads to settle down after the move. This is

typically the slowest step in the process and the predominant

bottleneck to overall transfer rates.

o The rotational latency is the amount of time required for the

desired sector to rotate around and come under the read-write

head.This can range anywhere from zero to one full revolution,

and on the average will equal one-half revolution. This is another

physical step and is usually the second slowest step behind seek

time. (For a disk rotating at 7200 rpm, the average rotational

latency would be 1/2 revolution / 120 revolutions per second, or

just over 4 milliseconds, a long time by computer standards.

o The transfer rate, which is the time required to move the data

electronically from the disk to the computer. (Some authors may

also use the term transfer rate to refer to the overall transfer rate,

including seek time and rotational latency as well as the electronic

data transfer rate.)

 Disk heads "fly" over the surface on a very thin cushion of air. If they

should accidentally contact the disk, then a head crash occurs, which

may or may not permanently damage the disk or even destroy it

completely. For this reason it is normal to park the disk heads when

turning a computer off, which means to move the heads off the disk or to

an area of the disk where there is no data stored.

 Floppy disks are normally removable. Hard drives can also be

removable, and some are even hot-swappable, meaning they can be

removed while the computer is running, and a new hard drive inserted in

their place.

 Disk drives are connected to the computer via a cable known as the I/O

Bus. Some of the common interface formats include Enhanced

Integrated Drive Electronics, EIDE; Advanced Technology Attachment,

ATA; Serial ATA, SATA, Universal Serial Bus, USB; Fiber Channel,

FC, and Small Computer Systems Interface, SCSI.

 The host controller is at the computer end of the I/O bus, and the disk

controller is built into the disk itself. The CPU issues commands to the

host controller via I/O ports. Data is transferred between the magnetic

surface and onboard cache by the disk controller, and then the data is

transferred from that cache to the host controller and the motherboard

memory at electronic speeds.

10.1.2 Solid-State Disks - New

 As technologies improve and economics change, old technologies are

often used in different ways. One example of this is the increasing used

of solid state disks, or SSDs.

 SSDs use memory technology as a small fast hard disk. Specific

implementations may use either flash memory or DRAM chips protected

by a battery to sustain the information through power cycles.

 Because SSDs have no moving parts they are much faster than

traditional hard drives, and certain problems such as the scheduling of

disk accesses simply do not apply.

 However SSDs also have their weaknesses: They are more expensive

than hard drives, generally not as large, and may have shorter life spans.

 SSDs are especially useful as a high-speed cache of hard-disk

information that must be accessed quickly. One example is to store

filesystem meta-data, e.g. directory and inode information, that must be

accessed quickly and often. Another variation is a boot disk containing

the OS and some application executables, but no vital user data. SSDs

are also used in laptops to make them smaller, faster, and lighter.

 Because SSDs are so much faster than traditional hard disks, the

throughput of the bus can become a limiting factor, causing some SSDs

to be connected directly to the system PCI bus for example.

10.1.3 Magnetic Tapes - was 12.1.2

 Magnetic tapes were once used for common secondary storage before

the days of hard disk drives, but today are used primarily for backups.

 Accessing a particular spot on a magnetic tape can be slow, but once

reading or writing commences, access speeds are comparable to disk

drives.

 Capacities of tape drives can range from 20 to 200 GB, and compression

can double that capacity.

10.2 Disk Structure

 The traditional head-sector-cylinder, HSC numbers are mapped to linear block

addresses by numbering the first sector on the first head on the outermost track

as sector 0. Numbering proceeds with the rest of the sectors on that same track,

and then the rest of the tracks on the same cylinder before proceeding through

the rest of the cylinders to the center of the disk. In modern practice these linear

block addresses are used in place of the HSC numbers for a variety of reasons:

1. The linear length of tracks near the outer edge of the disk is much longer

than for those tracks located near the center, and therefore it is possible

to squeeze many more sectors onto outer tracks than onto inner ones.

2. All disks have some bad sectors, and therefore disks maintain a few

spare sectors that can be used in place of the bad ones. The mapping of

spare sectors to bad sectors in managed internally to the disk controller.

3. Modern hard drives can have thousands of cylinders, and hundreds of

sectors per track on their outermost tracks. These numbers exceed the

range of HSC numbers for many (older) operating systems, and

therefore disks can be configured for any convenient combination of

HSC values that falls within the total number of sectors physically on the

drive.

 There is a limit to how closely packed individual bits can be placed on a

physical media, but that limit is growing increasingly more packed as

technological advances are made.

 Modern disks pack many more sectors into outer cylinders than inner ones,

using one of two approaches:

o With Constant Linear Velocity, CLV, the density of bits is uniform from

cylinder to cylinder. Because there are more sectors in outer cylinders,

the disk spins slower when reading those cylinders, causing the rate of

bits passing under the read-write head to remain constant. This is the

approach used by modern CDs and DVDs.

o With Constant Angular Velocity, CAV, the disk rotates at a constant

angular speed, with the bit density decreasing on outer cylinders. (These

disks would have a constant number of sectors per track on all cylinders.

)

10.3 Disk Attachment

Disk drives can be attached either directly to a particular host (a local disk) or to a

network.

10.3.1 Host-Attached Storage

 Local disks are accessed through I/O Ports as described earlier.
 The most common interfaces are IDE or ATA, each of which allow up to two

drives per host controller.
 SATA is similar with simpler cabling.
 High end workstations or other systems in need of larger number of disks

typically use SCSI disks:
o The SCSI standard supports up to 16 targets on each SCSI bus, one of

which is generally the host adapter and the other 15 of which can be
disk or tape drives.

o A SCSI target is usually a single drive, but the standard also supports up
to 8 units within each target. These would generally be used for
accessing individual disks within a RAID array. (See below.)

o The SCSI standard also supports multiple host adapters in a single
computer, i.e. multiple SCSI busses.

o Modern advancements in SCSI include "fast" and "wide" versions, as
well as SCSI-2.

o SCSI cables may be either 50 or 68 conductors. SCSI devices may be
external as well as internal.

o See wikipedia for more information on the SCSI interface.
 FC is a high-speed serial architecture that can operate over optical fiber or

four-conductor copper wires, and has two variants:
o A large switched fabric having a 24-bit address space. This variant

allows for multiple devices and multiple hosts to interconnect, forming

http://en.wikipedia.org/wiki/SCSI

the basis for the storage-area networks, SANs, to be discussed in a
future section.

o The arbitrated loop, FC-AL, that can address up to 126 devices (drives
and controllers.)

10.3.2 Network-Attached Storage

 Network attached storage connects storage devices to computers using a
remote procedure call, RPC, interface, typically with something like NFS
filesystem mounts. This is convenient for allowing several computers in a
group common access and naming conventions for shared storage.

 NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols
and standard network connections, allowing long-distance remote access to
shared files.

 NAS allows computers to easily share data storage, but tends to be less
efficient than standard host-attached storage.

Figure 10.2 - Network-attached storage.

10.3.3 Storage-Area Network

 A Storage-Area Network, SAN, connects computers and storage devices in a
network, using storage protocols instead of network protocols.

 One advantage of this is that storage access does not tie up regular
networking bandwidth.

 SAN is very flexible and dynamic, allowing hosts and devices to attach and
detach on the fly.

 SAN is also controllable, allowing restricted access to certain hosts and
devices.

Figure 10.3 - Storage-area network.

10.4 Disk Scheduling

 As mentioned earlier, disk transfer speeds are limited primarily by seek
times and rotational latency. When multiple requests are to be processed
there is also some inherent delay in waiting for other requests to be
processed.

 Bandwidth is measured by the amount of data transferred divided by the total
amount of time from the first request being made to the last transfer being
completed, (for a series of disk requests.)

 Both bandwidth and access time can be improved by processing requests in a
good order.

 Disk requests include the disk address, memory address, number of sectors to
transfer, and whether the request is for reading or writing.

10.4.1 FCFS Scheduling

 First-Come First-Serve is simple and intrinsically fair, but not very efficient.
Consider in the following sequence the wild swing from cylinder 122 to 14 and
then back to 124:

Figure 10.4 - FCFS disk scheduling.

10.4.2 SSTF Scheduling

 Shortest Seek Time First scheduling is more efficient, but may lead to
starvation if a constant stream of requests arrives for the same general area of
the disk.

 SSTF reduces the total head movement to 236 cylinders, down from 640
required for the same set of requests under FCFS. Note, however that the
distance could be reduced still further to 208 by starting with 37 and then 14
first before processing the rest of the requests.

Figure 10.5 - SSTF disk scheduling.

10.4.3 SCAN Scheduling

 The SCAN algorithm, a.k.a. the elevator algorithm moves back and forth from
one end of the disk to the other, similarly to an elevator processing requests in
a tall building.

Figure 10.6 - SCAN disk scheduling.

 Under the SCAN algorithm, If a request arrives just ahead of the moving head
then it will be processed right away, but if it arrives just after the head has
passed, then it will have to wait for the head to pass going the other way on
the return trip. This leads to a fairly wide variation in access times which can
be improved upon.

 Consider, for example, when the head reaches the high end of the disk:
Requests with high cylinder numbers just missed the passing head, which
means they are all fairly recent requests, whereas requests with low numbers
may have been waiting for a much longer time. Making the return scan from
high to low then ends up accessing recent requests first and making older
requests wait that much longer.

10.4.4 C-SCAN Scheduling

 The Circular-SCAN algorithm improves upon SCAN by treating all requests in a
circular queue fashion - Once the head reaches the end of the disk, it returns
to the other end without processing any requests, and then starts again from
the beginning of the disk:

Figure 10.7 - C-SCAN disk scheduling.

12.4.5 LOOK Scheduling

 LOOK scheduling improves upon SCAN by looking ahead at the queue of
pending requests, and not moving the heads any farther towards the end of
the disk than is necessary. The following diagram illustrates the circular form
of LOOK:

Figure 10.8 - C-LOOK disk scheduling.

10.4.6 Selection of a Disk-Scheduling Algorithm

 With very low loads all algorithms are equal, since there will normally only be
one request to process at a time.

 For slightly larger loads, SSTF offers better performance than FCFS, but may
lead to starvation when loads become heavy enough.

 For busier systems, SCAN and LOOK algorithms eliminate starvation problems.
 The actual optimal algorithm may be something even more complex than

those discussed here, but the incremental improvements are generally not
worth the additional overhead.

 Some improvement to overall filesystem access times can be made by
intelligent placement of directory and/or inode information. If those
structures are placed in the middle of the disk instead of at the beginning of
the disk, then the maximum distance from those structures to data blocks is
reduced to only one-half of the disk size. If those structures can be further
distributed and furthermore have their data blocks stored as close as possible
to the corresponding directory structures, then that reduces still further the
overall time to find the disk block numbers and then access the corresponding
data blocks.

 On modern disks the rotational latency can be almost as significant as the seek
time, however it is not within the OSes control to account for that, because

modern disks do not reveal their internal sector mapping schemes,
(particularly when bad blocks have been remapped to spare sectors.)

o Some disk manufacturers provide for disk scheduling algorithms directly
on their disk controllers, (which do know the actual geometry of the
disk as well as any remapping), so that if a series of requests are sent
from the computer to the controller then those requests can be
processed in an optimal order.

o Unfortunately there are some considerations that the OS must take into
account that are beyond the abilities of the on-board disk-scheduling
algorithms, such as priorities of some requests over others, or the need
to process certain requests in a particular order. For this reason OSes
may elect to spoon-feed requests to the disk controller one at a time in
certain situations.

10.6 Swap-Space Management

 Modern systems typically swap out pages as needed, rather than swapping out

entire processes. Hence the swapping system is part of the virtual memory

management system.

 Managing swap space is obviously an important task for modern OSes.

10.6.1 Swap-Space Use

 The amount of swap space needed by an OS varies greatly according to

how it is used. Some systems require an amount equal to physical RAM;

some want a multiple of that; some want an amount equal to the amount

by which virtual memory exceeds physical RAM, and some systems use

little or none at all!

 Some systems support multiple swap spaces on separate disks in order to

speed up the virtual memory system.

10.6.2 Swap-Space Location

Swap space can be physically located in one of two locations:

 As a large file which is part of the regular filesystem. This is easy

to implement, but inefficient. Not only must the swap space be

accessed through the directory system, the file is also subject to

fragmentation issues. Caching the block location helps in finding

the physical blocks, but that is not a complete fix.

 As a raw partition, possibly on a separate or little-used disk. This

allows the OS more control over swap space management, which

is usually faster and more efficient. Fragmentation of swap space

is generally not a big issue, as the space is re-initialized every

time the system is rebooted. The downside of keeping swap space

on a raw partition is that it can only be grown by repartitioning the

hard drive.

12.6.3 Swap-Space Management: An Example

 Historically OSes swapped out entire processes as needed. Modern

systems swap out only individual pages, and only as needed. (For

example process code blocks and other blocks that have not been

changed since they were originally loaded are normally just freed from

the virtual memory system rather than copying them to swap space,

because it is faster to go find them again in the filesystem and read them

back in from there than to write them out to swap space and then read

them back.)

 In the mapping system shown below for Linux systems, a map of swap

space is kept in memory, where each entry corresponds to a 4K block in

the swap space. Zeros indicate free slots and non-zeros refer to how

many processes have a mapping to that particular block (>1 for shared

pages only.)

Figure 10.10 - The data structures for swapping on Linux systems.

10.7 RAID Structure

 The general idea behind RAID is to employ a group of hard drives together
with some form of duplication, either to increase reliability or to speed up
operations, (or sometimes both.)

 RAID originally stood for Redundant Array of Inexpensive Disks, and was
designed to use a bunch of cheap small disks in place of one or two larger
more expensive ones. Today RAID systems employ large possibly expensive
disks as their components, switching the definition to Independent disks.

10.7.1 Improvement of Reliability via Redundancy

 The more disks a system has, the greater the likelihood that one of them will
go bad at any given time. Hence increasing disks on a system
actually decreases the Mean Time To Failure, MTTF of the system.

 If, however, the same data was copied onto multiple disks, then the data
would not be lost unless both (or all) copies of the data were damaged
simultaneously, which is a MUCH lower probability than for a single disk going
bad. More specifically, the second disk would have to go bad before the first
disk was repaired, which brings the Mean Time To Repair into play. For
example if two disks were involved, each with a MTTF of 100,000 hours and a
MTTR of 10 hours, then the Mean Time to Data Loss would be 500 * 10^6
hours, or 57,000 years!

 This is the basic idea behind disk mirroring, in which a system contains
identical data on two or more disks.

o Note that a power failure during a write operation could cause both
disks to contain corrupt data, if both disks were writing simultaneously
at the time of the power failure. One solution is to write to the two
disks in series, so that they will not both become corrupted (at least
not in the same way) by a power failure. And alternate solution
involves non-volatile RAM as a write cache, which is not lost in the
event of a power failure and which is protected by error-correcting
codes.

10.7.2 Improvement in Performance via Parallelism

 There is also a performance benefit to mirroring, particularly with respect to
reads. Since every block of data is duplicated on multiple disks, read
operations can be satisfied from any available copy, and multiple disks can be
reading different data blocks simultaneously in parallel. (Writes could possibly
be sped up as well through careful scheduling algorithms, but it would be
complicated in practice.)

 Another way of improving disk access time is with striping, which basically
means spreading data out across multiple disks that can be accessed
simultaneously.

o With bit-level striping the bits of each byte are striped across multiple
disks. For example if 8 disks were involved, then each 8-bit byte would
be read in parallel by 8 heads on separate disks. A single disk read
would access 8 * 512 bytes = 4K worth of data in the time normally
required to read 512 bytes. Similarly if 4 disks were involved, then two
bits of each byte could be stored on each disk, for 2K worth of disk
access per read or write operation.

o Block-level striping spreads a filesystem across multiple disks on a block-by-
block basis, so if block N were located on disk 0, then block N + 1 would
be on disk 1, and so on. This is particularly useful when filesystems are
accessed in clusters of physical blocks. Other striping possibilities exist,
with block-level striping being the most common.

10.7.3 RAID Levels

 Mirroring provides reliability but is expensive; Striping improves performance,
but does not improve reliability. Accordingly there are a number of different
schemes that combine the principals of mirroring and striping in different
ways, in order to balance reliability versus performance versus cost. These are
described by different RAID levels, as follows: (In the diagram that follows,
"C" indicates a copy, and "P" indicates parity, i.e. checksum bits.)

1. Raid Level 0 - This level includes striping only, with no mirroring.
2. Raid Level 1 - This level includes mirroring only, no striping.
3. Raid Level 2 - This level stores error-correcting codes on additional disks,

allowing for any damaged data to be reconstructed by subtraction from
the remaining undamaged data. Note that this scheme requires only
three extra disks to protect 4 disks worth of data, as opposed to full
mirroring. (The number of disks required is a function of the error-
correcting algorithms, and the means by which the particular bad bit(s)
is(are) identified.)

4. Raid Level 3 - This level is similar to level 2, except that it takes advantage
of the fact that each disk is still doing its own error-detection, so that
when an error occurs, there is no question about which disk in the array
has the bad data. As a result a single parity bit is all that is needed to
recover the lost data from an array of disks. Level 3 also includes
striping, which improves performance. The downside with the parity

approach is that every disk must take part in every disk access, and the
parity bits must be constantly calculated and checked, reducing
performance. Hardware-level parity calculations and NVRAM cache can
help with both of those issues. In practice level 3 is greatly preferred
over level 2.

5. Raid Level 4 - This level is similar to level 3, employing block-level striping
instead of bit-level striping. The benefits are that multiple blocks can be
read independently, and changes to a block only require writing two
blocks (data and parity) rather than involving all disks. Note that new
disks can be added seamlessly to the system provided they are
initialized to all zeros, as this does not affect the parity results.

6. Raid Level 5 - This level is similar to level 4, except the parity blocks are
distributed over all disks, thereby more evenly balancing the load on
the system. For any given block on the disk(s), one of the disks will hold
the parity information for that block and the other N-1 disks will hold
the data. Note that the same disk cannot hold both data and parity for
the same block, as both would be lost in the event of a disk crash.

7. Raid Level 6 - This level extends raid level 5 by storing multiple bits of
error-recovery codes, (such as the Reed-Solomon codes), for each bit
position of data, rather than a single parity bit. In the example shown
below 2 bits of ECC are stored for every 4 bits of data, allowing data
recovery in the face of up to two simultaneous disk failures. Note that
this still involves only 50% increase in storage needs, as opposed to
100% for simple mirroring which could only tolerate a single disk failure.

http://en.wikipedia.org/wiki/Reed-Solomon_coding

Figure 10.11 - RAID levels.

 There are also two RAID levels which combine RAID levels 0 and 1 (striping
and mirroring) in different combinations, designed to provide both
performance and reliability at the expense of increased cost.

o RAID level 0 + 1 disks are first striped, and then the striped disks
mirrored to another set. This level generally provides better
performance than RAID level 5.

o RAID level 1 + 0 mirrors disks in pairs, and then stripes the mirrored
pairs. The storage capacity, performance, etc. are all the same, but
there is an advantage to this approach in the event of multiple disk
failures, as illustrated below:.

 In diagram (a) below, the 8 disks have been divided into two sets
of four, each of which is striped, and then one stripe set is used
to mirror the other set.

 If a single disk fails, it wipes out the entire stripe set, but
the system can keep on functioning using the remaining
set.

 However if a second disk from the other stripe set now
fails, then the entire system is lost, as a result of two disk
failures.

 In diagram (b), the same 8 disks are divided into four sets of two,
each of which is mirrored, and then the file system is striped
across the four sets of mirrored disks.

 If a single disk fails, then that mirror set is reduced to a
single disk, but the system rolls on, and the other three
mirror sets continue mirroring.

 Now if a second disk fails, (that is not the mirror of the
already failed disk), then another one of the mirror sets is
reduced to a single disk, but the system can continue
without data loss.

 In fact the second arrangement could handle as many as
four simultaneously failed disks, as long as no two of them
were from the same mirror pair.

o See the wikipedia article on nested raid levels for more information.
o Here's a better

explanation: http://www.storagereview.com/guide2000/ref/hdd/perf/r
aid/levels/multXY.html

Figure 10.12 - RAID 0 + 1 and 1 + 0

10.7.4 Selecting a RAID Level

 Trade-offs in selecting the optimal RAID level for a particular application
include cost, volume of data, need for reliability, need for performance, and

http://en.wikipedia.org/wiki/RAID_10
http://www.storagereview.com/guide2000/ref/hdd/perf/raid/levels/multXY.html
http://www.storagereview.com/guide2000/ref/hdd/perf/raid/levels/multXY.html

rebuild time, the latter of which can affect the likelihood that a second disk
will fail while the first failed disk is being rebuilt.

 Other decisions include how many disks are involved in a RAID set and how
many disks to protect with a single parity bit. More disks in the set increases
performance but increases cost. Protecting more disks per parity bit saves
cost, but increases the likelihood that a second disk will fail before the first
bad disk is repaired.

10.7.5 Extensions

 RAID concepts have been extended to tape drives (e.g. striping tapes for
faster backups or parity checking tapes for reliability), and for broadcasting of
data.

10.7.6 Problems with RAID

 RAID protects against physical errors, but not against any number of bugs or
other errors that could write erroneous data.

 ZFS adds an extra level of protection by including data block checksums in all
inodes along with the pointers to the data blocks. If data are mirrored and one
copy has the correct checksum and the other does not, then the data with the
bad checksum will be replaced with a copy of the data with the good
checksum. This increases reliability greatly over RAID alone, at a cost of a
performance hit that is acceptable because ZFS is so fast to begin with.

Figure 10.13 - ZFS checksums all metadata and data.

 Another problem with traditional filesystems is that the sizes are fixed, and
relatively difficult to change. Where RAID sets are involved it becomes even
harder to adjust filesystem sizes, because a filesystem cannot span across
multiple filesystems.

 ZFS solves these problems by pooling RAID sets, and by dynamically allocating
space to filesystems as needed. Filesystem sizes can be limited by quotas, and
space can also be reserved to guarantee that a filesystem will be able to grow
later, but these parameters can be changed at any time by the filesystem's
owner. Otherwise filesystems grow and shrink dynamically as needed.

Figure 10.14 - (a) Traditional volumes and file systems. (b) a ZFS pool and file

systems.

10.8 Stable-Storage Implementation (Optional)

 The concept of stable storage (first presented in chapter 6) involves a storage

medium in which data is never lost, even in the face of equipment failure in the

middle of a write operation.

 To implement this requires two (or more) copies of the data, with separate

failure modes.

 An attempted disk write results in one of three possible outcomes:

1. The data is successfully and completely written.

2. The data is partially written, but not completely. The last block written

may be garbled.

3. No writing takes place at all.

 Whenever an equipment failure occurs during a write, the system must detect it,

and return the system back to a consistent state. To do this requires two

physical blocks for every logical block, and the following procedure:

1. Write the data to the first physical block.

2. After step 1 had completed, then write the data to the second physical

block.

3. Declare the operation complete only after both physical writes have

completed successfully.

 During recovery the pair of blocks is examined.

o If both blocks are identical and there is no sign of damage, then no

further action is necessary.

o If one block contains a detectable error but the other does not, then the

damaged block is replaced with the good copy. (This will either undo

the operation or complete the operation, depending on which block is

damaged and which is undamaged.)

o If neither block shows damage but the data in the blocks differ, then

replace the data in the first block with the data in the second block. (

Undo the operation.)

Because the sequence of operations described above is slow, stable storage usually

includes NVRAM as a cache, and declares a write operation complete once it has

been written to the NVRAM.

File-System Interface

10.1 File Concept

10.1.1 File Attributes

 Different OSes keep track of different file attributes, including:

o Name - Some systems give special significance to names, and

particularly extensions (.exe, .txt, etc.), and some do not. Some

extensions may be of significance to the OS (.exe), and others

only to certain applications (.jpg)

o Identifier (e.g. inode number)

o Type - Text, executable, other binary, etc.

o Location - on the hard drive.

o Size

o Protection

o Time & Date

o User ID

10.1.2 File Operations

 The file ADT supports many common operations:

o Creating a file

o Writing a file

o Reading a file

o Repositioning within a file

o Deleting a file

o Truncating a file.

 Most OSes require that files be opened before access and closed after all

access is complete. Normally the programmer must open and close files

explicitly, but some rare systems open the file automatically at first

access. Information about currently open files is stored in an open file

table, containing for example:

o File pointer - records the current position in the file, for the next

read or write access.

o File-open count - How many times has the current file been

opened (simultaneously by different processes) and not yet

closed? When this counter reaches zero the file can be removed

from the table.

o Disk location of the file.

o Access rights

 Some systems provide support for file locking.

o A shared lock is for reading only.

o A exclusive lock is for writing as well as reading.

o An advisory lock is informational only, and not enforced. (A

"Keep Out" sign, which may be ignored.)

o A mandatory lock is enforced. (A truly locked door.)

o UNIX used advisory locks, and Windows uses mandatory locks.

10.1.3 File Types

 Windows (and some other systems) use special file extensions to

indicate the type of each file:

Common file types

 Macintosh stores a creator attribute for each file, according to the

program that first created it with the create() system call.

 UNIX stores magic numbers at the beginning of certain files. (

Experiment with the "file" command, especially in directories such as

/bin and /dev)

10.1.4 File Structure

 Some files contain an internal structure, which may or may not be

known to the OS.

 For the OS to support particular file formats increases the size and

complexity of the OS.

 UNIX treats all files as sequences of bytes, with no further consideration

of the internal structure. (With the exception of executable binary

programs, which it must know how to load and find the first executable

statement, etc.)

 Macintosh files have two forks - a resource fork, and a data fork. The

resource fork contains information relating to the UI, such as icons and

button images, and can be modified independently of the data fork,

which contains the code or data as appropriate.

10.1.5 Internal File Structure

 Disk files are accessed in units of physical blocks, typically 512 bytes or

some power-of-two multiple thereof. (Larger physical disks use larger

block sizes, to keep the range of block numbers within the range of a 32-

bit integer.)

 Internally files are organized in units of logical units, which may be as

small as a single byte, or may be a larger size corresponding to some

data record or structure size.

 The number of logical units which fit into one physical block determines

its packing, and has an impact on the amount of internal fragmentation

(wasted space) that occurs.

 As a general rule, half a physical block is wasted for each file, and the

larger the block sizes the more space is lost to internal fragmentation.

10.2 Access Methods

10.2.1 Sequential Access

 A sequential access file emulates magnetic tape operation, and generally

supports a few operations:

o read next - read a record and advance the tape to the next position.

o write next - write a record and advance the tape to the next

position.

o rewind

o skip n records - May or may not be supported. N may be limited

to positive numbers, or may be limited to +/- 1.

Sequential-access file

10.2.2 Direct Access

 Jump to any record and read that record. Operations supported include:

o read n - read record number n. (Note an argument is now

required.)

o write n - write record number n. (Note an argument is now

required.)

o jump to record n - could be 0 or the end of file.

o Query current record - used to return back to this record later.

o Sequential access can be easily emulated using direct access. The

inverse is complicated and inefficient.

Simulation of sequential access on a direct access file

10.2.3 Other Access Methods

 An indexed access scheme can be easily built on top of a direct access

system. Very large files may require a multi-tiered indexing scheme, i.e.

indexes of indexes.

Example of index and relative files

10.3 Directory Structure

10.3.1 Storage Structure

 A disk can be used in its entirety for a file system.

 Alternatively a physical disk can be broken up into multiple partitions,

slices, or mini-disks, each of which becomes a virtual disk and can have

its own filesystem. (or be used for raw storage, swap space, etc.)

 Or, multiple physical disks can be combined into one volume, i.e. a

larger virtual disk, with its own filesystem spanning the physical disks.

A typical file system organization

10.3.2 Directory Overview

 Directory operations to be supported include:

o Search for a file

o Create a file - add to the directory

o Delete a file - erase from the directory

o List a directory - possibly ordered in different ways.

o Rename a file - may change sorting order

o Traverse the file system.

10.3.3. Single-Level Directory

 Simple to implement, but each file must have a unique name.

Single-level directory

10.3.4 Two-Level Directory

 Each user gets their own directory space.

 File names only need to be unique within a given user's directory.

 A master file directory is used to keep track of each users directory, and

must be maintained when users are added to or removed from the

system.

 A separate directory is generally needed for system (executable) files.

 Systems may or may not allow users to access other directories besides

their own

o If access to other directories is allowed, then provision must be

made to specify the directory being accessed.

o If access is denied, then special consideration must be made for

users to run programs located in system directories. A search

path is the list of directories in which to search for executable

programs, and can be set uniquely for each user.

Two level directory structure

10.3.5 Tree-Structured Directories

 An obvious extension to the two-tiered directory structure, and the one

with which we are all most familiar.

 Each user / process has the concept of a current directory from which all

(relative) searches take place.

 Files may be accessed using either absolute pathnames (relative to the

root of the tree) or relative pathnames (relative to the current

directory.)

 Directories are stored the same as any other file in the system, except

there is a bit that identifies them as directories, and they have some

special structure that the OS understands.

 One question for consideration is whether or not to allow the removal of

directories that are not empty - Windows requires that directories be

emptied first, and UNIX provides an option for deleting entire sub-trees.

Tree-structured directory structure

10.3.6 Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the

directory structure (e.g. because they are being shared by more than one

user / process), it can be useful to provide an acyclic-graph structure.

(Note the directed arcs from parent to child.)

 UNIX provides two types of links for implementing the acyclic-graph

structure. (See "man ln" for more details.)

o A hard link (usually just called a link) involves multiple

directory entries that both refer to the same file. Hard links are

only valid for ordinary files in the same filesystem.

o A symbolic link, that involves a special file, containing

information about where to find the linked file. Symbolic links

may be used to link directories and/or files in other filesystems, as

well as ordinary files in the current filesystem.

 Windows only supports symbolic links, termed shortcuts.

 Hard links require a reference count, or link count for each file, keeping

track of how many directory entries are currently referring to this file.

Whenever one of the references is removed the link count is reduced,

and when it reaches zero, the disk space can be reclaimed.

 For symbolic links there is some question as to what to do with the

symbolic links when the original file is moved or deleted:

o One option is to find all the symbolic links and adjust them also.

o Another is to leave the symbolic links dangling, and discover that

they are no longer valid the next time they are used.

o What if the original file is removed, and replaced with another file

having the same name before the symbolic link is next used?

Acyclic-Graph directory structure

10.3.7 General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise:

o Search algorithms can go into infinite loops. One solution is to not

follow links in search algorithms. (Or not to follow symbolic

links, and to only allow symbolic links to refer to directories.)

o Sub-trees can become disconnected from the rest of the tree and

still not have their reference counts reduced to zero. Periodic

garbage collection is required to detect and resolve this problem. (

chkdsk in DOS and fsck in UNIX search for these problems,

among others, even though cycles are not supposed to be allowed

in either system. Disconnected disk blocks that are not marked as

free are added back to the file systems with made-up file names,

and can usually be safely deleted.)

General graph directory

10.4 File-System Mounting

 The basic idea behind mounting file systems is to combine multiple file

systems into one large tree structure.

 The mount command is given a filesystem to mount and a mount point (

directory) on which to attach it.

 Once a file system is mounted onto a mount point, any further references to that

directory actually refer to the root of the mounted file system.

 Any files (or sub-directories) that had been stored in the mount point directory

prior to mounting the new filesystem are now hidden by the mounted

filesystem, and are no longer available. For this reason some systems only

allow mounting onto empty directories.

 Filesystems can only be mounted by root, unless root has previously configured

certain filesystems to be mountable onto certain pre-determined mount points. (

E.g. root may allow users to mount floppy filesystems to /mnt or something

like it.) Anyone can run the mount command to see what filesystems are

currently mounted.

 Filesystems may be mounted read-only, or have other restrictions imposed.

Mount point

 The traditional Windows OS runs an extended two-tier directory structure,

where the first tier of the structure separates volumes by drive letters, and a tree

structure is implemented below that level.

 Macintosh runs a similar system, where each new volume that is found is

automatically mounted and added to the desktop when it is found.

 More recent Windows systems allow filesystems to be mounted to any

directory in the filesystem, much like UNIX.

10.5 File Sharing

10.5.1 Multiple Users

 On a multi-user system, more information needs to be stored for each

file:

o The owner (user) who owns the file, and who can control its

access.

o The group of other user IDs that may have some special access to

the file.

o What access rights are afforded to the owner (User), the Group,

and to the rest of the world (the universe, a.k.a. Others.)

o Some systems have more complicated access control, allowing or

denying specific accesses to specifically named users or groups.

10.5.2 Remote File Systems

 The advent of the Internet introduces issues for accessing files stored on

remote computers

o The original method was ftp, allowing individual files to be

transported across systems as needed. Ftp can be either account

and password controlled, or anonymous, not requiring any user

name or password.

o Various forms of distributed file systems allow remote file

systems to be mounted onto a local directory structure, and

accessed using normal file access commands. (The actual files

are still transported across the network as needed, possibly using

ftp as the underlying transport mechanism.)

o The WWW has made it easy once again to access files on remote

systems without mounting their filesystems, generally using

(anonymous) ftp as the underlying file transport mechanism.

10.5.2.1 The Client-Server Model

 When one computer system remotely mounts a filesystem that is

physically located on another system, the system which physically

owns the files acts as a server, and the system which mounts them

is the client.

 User IDs and group IDs must be consistent across both systems

for the system to work properly. (I.e. this is most applicable

across multiple computers managed by the same organization,

shared by a common group of users.)

 The same computer can be both a client and a server. (E.g. cross-

linked file systems.)

 There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain

trusted systems only. Spoofing (a computer pretending to

be a different computer) is a potential security risk.

o Servers may restrict remote access to read-only.

o Servers restrict which filesystems may be remotely

mounted. Generally the information within those

subsystems is limited, relatively public, and protected by

frequent backups.

 The NFS (Network File System) is a classic example of such a

system.

10.5.2.2 Distributed Information Systems

 The Domain Name System, DNS, provides for a unique naming

system across all of the Internet.

 Domain names are maintained by the Network Information

System, NIS, which unfortunately has several security issues.

NIS+ is a more secure version, but has not yet gained the same

widespread acceptance as NIS.

 Microsoft's Common Internet File System, CIFS, establishes

a network login for each user on a networked system with shared

file access. Older Windows systems used domains, and newer

systems (XP, 2000), use active directories. User names must

match across the network for this system to be valid.

 A newer approach is the Lightweight Directory-Access Protocol,

LDAP, which provides a secure single sign-on for all users to

access all resources on a network. This is a secure system which is

gaining in popularity, and which has the maintenance advantage

of combining authorization information in one central location.

10.5.2.3 Failure Modes

 When a local disk file is unavailable, the result is generally known

immediately, and is generally non-recoverable. The only

reasonable response is for the response to fail.

 However when a remote file is unavailable, there are many

possible reasons, and whether or not it is unrecoverable is not

readily apparent. Hence most remote access systems allow for

blocking or delayed response, in the hopes that the remote system

(or the network) will come back up eventually.

10.5.3 Consistency Semantics

 Consistency Semantics deals with the consistency between the views of

shared files on a networked system. When one user changes the file,

when do other users see the changes?

 At first glance this appears to have all of the synchronization issues

discussed in Chapter 6. Unfortunately the long delays involved in

network operations prohibit the use of atomic operations as discussed in

that chapter.

10.5.3.1 UNIX Semantics

 The UNIX file system uses the following semantics:

o Writes to an open file are immediately visible to any other

user who has the file open.

o One implementation uses a shared location pointer, which

is adjusted for all sharing users.

 The file is associated with a single exclusive physical resource,

which may delay some accesses.

10.5.3.2 Session Semantics

 The Andrew File System, AFS uses the following semantics:

o Writes to an open file are not immediately visible to other

users.

o When a file is closed, any changes made become available

only to users who open the file at a later time.

 According to these semantics, a file can be associated with

multiple (possibly different) views. Almost no constraints are

imposed on scheduling accesses. No user is delayed in reading or

writing their personal copy of the file.

 AFS file systems may be accessible by systems around the world.

Access control is maintained through (somewhat) complicated

access control lists, which may grant access to the entire world

(literally) or to specifically named users accessing the files from

specifically named remote environments.

10.5.3.3 Immutable-Shared-Files Semantics

 Under this system, when a file is declared as shared by its creator,

it becomes immutable and the name cannot be re-used for any

other resource. Hence it becomes read-only, and shared access is

simple.

10.6 Protection

 Files must be kept safe for reliability (against accidental damage), and

protection (against deliberate malicious access.) The former is usually

managed with backup copies. This section discusses the latter.

 One simple protection scheme is to remove all access to a file. However this

makes the file unusable, so some sort of controlled access must be arranged.

10.6.1 Types of Access

 The following low-level operations are often controlled:

o Read - View the contents of the file

o Write - Change the contents of the file.

o Execute - Load the file onto the CPU and follow the instructions

contained therein.

o Append - Add to the end of an existing file.

o Delete - Remove a file from the system.

o List -View the name and other attributes of files on the system.

 Higher-level operations, such as copy, can generally be performed

through combinations of the above.

10.6.2 Access Control

 One approach is to have complicated Access Control Lists, ACL, which

specify exactly what access is allowed or denied for specific users or

groups.

o The AFS uses this system for distributed access.

o Control is very finely adjustable, but may be complicated,

particularly when the specific users involved are unknown. (AFS

allows some wild cards, so for example all users on a certain

remote system may be trusted, or a given username may be trusted

when accessing from any remote system.)

 UNIX uses a set of 9 access control bits, in three groups of three. These

correspond to R, W, and X permissions for each of the Owner, Group,

and Others. (See "man chmod" for full details.) The RWX bits control

the following privileges for ordinary files and directories:

bit Files Directories

R
Read (view)

file contents.
Read directory contents. Required to get a listing of the directory.

W

Write

(change) file

contents.

Change directory contents. Required to create or delete files.

X

Execute file

contents as a

program.

Access detailed directory information. Required to get a long listing,

or to access any specific file in the directory. Note that if a user has

X but not R permissions on a directory, they can still access specific

files, but only if they already know the name of the file they are

trying to access.

 In addition there are some special bits that can also be applied:

o The set user ID (SUID) bit and/or the set group ID (SGID) bits

applied to executable files temporarily change the identity of

whoever runs the program to match that of the owner / group of

the executable program. This allows users running specific

programs to have access to files (while running that program)

to which they would normally be unable to access. Setting of

these two bits is usually restricted to root, and must be done with

caution, as it introduces a potential security leak.

o The sticky bit on a directory modifies write permission, allowing

users to only delete files for which they are the owner. This allows

everyone to create files in /tmp, for example, but to only delete

files which they have created, and not anyone else's.

o The SUID, SGID, and sticky bits are indicated with an S, S, and T

in the positions for execute permission for the user, group, and

others, respectively. If the letter is lower case, (s, s, t), then the

corresponding execute permission is not also given. If it is upper

case, (S, S, T), then the coresponding execute permission IS

given.

o The numeric form of chmod is needed to set these advanced bits.

windows XP access control list management

 Windows adjusts files access through a simple GUI:

Figure 10.15

10.6.3 Other Protection Approaches and Issues

 Some systems can apply passwords, either to individual files, or to

specific sub-directories, or to the entire system. There is a trade-off

between the number of passwords that must be maintained (and

remembered by the users) and the amount of information that is

vulnerable to a lost or forgotten password.

 Older systems which did not originally have multi-user file access

permissions (DOS and older versions of Mac) must now

be retrofitted if they are to share files on a network.

 Access to a file requires access to all the files along its path as well. In a

cyclic directory structure, users may have different access to the same

file accessed through different paths.

 Sometimes just the knowledge of the existence of a file of a certain name

is a security (or privacy) concern. Hence the distinction between the R

and X bits on UNIX directories.

File-System Implementation

11.1 File-System Structure

 Hard disks have two important properties that make them suitable for

secondary storage of files in file systems: (1) Blocks of data can be rewritten in

place, and (2) they are direct access, allowing any block of data to be accessed

with only (relatively) minor movements of the disk heads and rotational

latency. (See Chapter 12)

 Disks are usually accessed in physical blocks, rather than a byte at a time.

Block sizes may range from 512 bytes to 4K or larger.

 File systems organize storage on disk drives, and can be viewed as a layered

design:

o At the lowest layer are the physical devices, consisting of the magnetic

media, motors & controls, and the electronics connected to them and

controlling them. Modern disk put more and more of the electronic

controls directly on the disk drive itself, leaving relatively little work for

the disk controller card to perform.

o I/O Control consists of device drivers, special software programs (often

written in assembly) which communicate with the devices by reading

and writing special codes directly to and from memory addresses

corresponding to the controller card's registers. Each controller card

(device) on a system has a different set of addresses (registers,

a.k.a. ports) that it listens to, and a unique set of command codes and

results codes that it understands.

o The basic file system level works directly with the device drivers in

terms of retrieving and storing raw blocks of data, without any

consideration for what is in each block. Depending on the system, blocks

may be referred to with a single block number, (e.g. block # 234234),

or with head-sector-cylinder combinations.

o The file organization module knows about files and their logical blocks,

and how they map to physical blocks on the disk. In addition to

translating from logical to physical blocks, the file organization module

also maintains the list of free blocks, and allocates free blocks to files as

needed.

o The logical file system deals with all of the meta data associated with a

file (UID, GID, mode, dates, etc), i.e. everything about the file except

the data itself. This level manages the directory structure and the

mapping of file names to file control blocks, FCBs, which contain all of

the meta data as well as block number information for finding the data

on the disk.

 The layered approach to file systems means that much of the code can be used

uniformly for a wide variety of different file systems, and only certain layers

need to be filesystem specific. Common file systems in use include the UNIX

file system, UFS, the Berkeley Fast File System, FFS, Windows systems FAT,

FAT32, NTFS, CD-ROM systems ISO 9660, and for Linux the extended file

systems ext2 and ext3 (among 40 others supported.)

Layered file system

11.2 File-System Implementation

11.2.1 Overview

 File systems store several important data structures on the disk:

o A boot-control block, (per volume) a.k.a. the boot block in

UNIX or the partition boot sector in Windows contains

information about how to boot the system off of this disk. This

will generally be the first sector of the volume if there is a

bootable system loaded on that volume, or the block will be left

vacant otherwise.

o A volume control block, (per volume) a.k.a. the master file

table in UNIX or the superblock in Windows, which contains

information such as the partition table, number of blocks on each

filesystem, and pointers to free blocks and free FCB blocks.

o A directory structure (per file system), containing file names and

pointers to corresponding FCBs. UNIX uses inode numbers, and

NTFS uses a master file table.

o The File Control Block, FCB, (per file) containing details about

ownership, size, permissions, dates, etc. UNIX stores this

information in inodes, and NTFS in the master file table as a

relational database structure.

A typical file-control block

 There are also several key data structures stored in memory:

o An in-memory mount table.

o An in-memory directory cache of recently accessed directory

information.

o A system-wide open file table, containing a copy of the FCB for

every currently open file in the system, as well as some other

related information.

o A per-process open file table, containing a pointer to the system

open file table as well as some other information. (For example

the current file position pointer may be either here or in the

system file table, depending on the implementation and whether

the file is being shared or not.)

 Figure 11.3 illustrates some of the interactions of file system

components when files are created and/or used:

o When a new file is created, a new FCB is allocated and filled out

with important information regarding the new file. The

appropriate directory is modified with the new file name and FCB

information.

o When a file is accessed during a program, the open() system call

reads in the FCB information from disk, and stores it in the

system-wide open file table. An entry is added to the per-process

open file table referencing the system-wide table, and an index

into the per-process table is returned by the open() system call.

UNIX refers to this index as a file descriptor, and Windows refers

to it as a file handle.

o If another process already has a file open when a new request

comes in for the same file, and it is sharable, then a counter in the

system-wide table is incremented and the per-process table is

adjusted to point to the existing entry in the system-wide table.

o When a file is closed, the per-process table entry is freed, and the

counter in the system-wide table is decremented. If that counter

reaches zero, then the system wide table is also freed. Any data

currently stored in memory cache for this file is written out to disk

if necessary.

In-memory file-system structures (a)File open (b) file read

11.2.2 Partitions and Mounting

 Physical disks are commonly divided into smaller units called partitions.

They can also be combined into larger units, but that is most commonly

done for RAID installations and is left for later chapters.

 Partitions can either be used as raw devices (with no structure imposed

upon them), or they can be formatted to hold a filesystem (i.e.

populated with FCBs and initial directory structures as appropriate.)

Raw partitions are generally used for swap space, and may also be used

for certain programs such as databases that choose to manage their own

disk storage system. Partitions containing filesystems can generally only

be accessed using the file system structure by ordinary users, but can

often be accessed as a raw device also by root.

 The boot block is accessed as part of a raw partition, by the boot

program prior to any operating system being loaded. Modern boot

programs understand multiple OSes and filesystem formats, and can give

the user a choice of which of several available systems to boot.

 The root partition contains the OS kernel and at least the key portions of

the OS needed to complete the boot process. At boot time the root

partition is mounted, and control is transferred from the boot program to

the kernel found there. (Older systems required that the root partition lie

completely within the first 1024 cylinders of the disk, because that was

as far as the boot program could reach. Once the kernel had control, then

it could access partitions beyond the 1024 cylinder boundary.)

 Continuing with the boot process, additional filesystems get mounted,

adding their information into the appropriate mount table structure. As a

part of the mounting process the file systems may be checked for errors

or inconsistencies, either because they are flagged as not having been

closed properly the last time they were used, or just for general

principals. Filesystems may be mounted either automatically or

manually. In UNIX a mount point is indicated by setting a flag in the in-

memory copy of the inode, so all future references to that inode get re-

directed to the root directory of the mounted filesystem.

11.2.3 Virtual File Systems

 Virtual File Systems, VFS, provide a common interface to multiple

different filesystem types. In addition, it provides for a unique identifier

(vnode) for files across the entire space, including across all filesystems

of different types. (UNIX inodes are unique only across a single

filesystem, and certainly do not carry across networked file systems.)

 The VFS in Linux is based upon four key object types:

o The inode object, representing an individual file

o The file object, representing an open file.

o The superblock object, representing a filesystem.

o The dentry object, representing a directory entry.

 Linux VFS provides a set of common functionalities for each filesystem,

using function pointers accessed through a table. The same functionality

is accessed through the same table position for all filesystem types,

though the actual functions pointed to by the pointers may be filesystem-

specific. See /usr/include/linux/fs.h for full details. Common operations

provided include open(), read(), write(), and mmap().

Schematic view of virtual file system

11.3 Directory Implementation

 Directories need to be fast to search, insert, and delete, with a minimum of

wasted disk space.

11.3.1 Linear List

 A linear list is the simplest and easiest directory structure to set up, but it

does have some drawbacks.

 Finding a file (or verifying one does not already exist upon creation)

requires a linear search.

 Deletions can be done by moving all entries, flagging an entry as

deleted, or by moving the last entry into the newly vacant position.

 Sorting the list makes searches faster, at the expense of more complex

insertions and deletions.

 A linked list makes insertions and deletions into a sorted list easier, with

overhead for the links.

 More complex data structures, such as B-trees, could also be considered.

11.3.2 Hash Table

 A hash table can also be used to speed up searches.

 Hash tables are generally implemented in addition to a linear or other

structure

11.4 Allocation Methods

 There are three major methods of storing files on disks: contiguous, linked, and

indexed.

11.4.1 Contiguous Allocation

 Contiguous Allocation requires that all blocks of a file be kept together

contiguously.

 Performance is very fast, because reading successive blocks of the same

file generally requires no movement of the disk heads, or at most one

small step to the next adjacent cylinder.

 Storage allocation involves the same issues discussed earlier for the

allocation of contiguous blocks of memory (first fit, best fit,

fragmentation problems, etc.) The distinction is that the high time

penalty required for moving the disk heads from spot to spot may now

justify the benefits of keeping files contiguously when possible.

 (Even file systems that do not by default store files contiguously can

benefit from certain utilities that compact the disk and make all files

contiguous in the process.)

 Problems can arise when files grow, or if the exact size of a file is

unknown at creation time:

o Over-estimation of the file's final size increases external

fragmentation and wastes disk space.

o Under-estimation may require that a file be moved or a process

aborted if the file grows beyond its originally allocated space.

o If a file grows slowly over a long time period and the total final

space must be allocated initially, then a lot of space becomes

unusable before the file fills the space.

 A variation is to allocate file space in large contiguous chunks,

called extents. When a file outgrows its original extent, then an

additional one is allocated. (For example an extent may be the size of a

complete track or even cylinder, aligned on an appropriate track or

cylinder boundary.) The high-performance files system Veritas uses

extents to optimize performance.

Contiguous allocation of disk space

11.4.2 Linked Allocation

 Disk files can be stored as linked lists, with the expense of the storage

space consumed by each link. (E.g. a block may be 508 bytes instead of

512.)

 Linked allocation involves no external fragmentation, does not require

pre-known file sizes, and allows files to grow dynamically at any time.

 Unfortunately linked allocation is only efficient for sequential access

files, as random access requires starting at the beginning of the list for

each new location access.

 Allocating clusters of blocks reduces the space wasted by pointers, at the

cost of internal fragmentation.

 Another big problem with linked allocation is reliability if a pointer is

lost or damaged. Doubly linked lists provide some protection, at the cost

of additional overhead and wasted space.

Linked allocation of disk space

 The File Allocation Table, FAT, used by DOS is a variation of linked

allocation, where all the links are stored in a separate table at the

beginning of the disk. The benefit of this approach is that the FAT table

can be cached in memory, greatly improving random access speeds.

11.4.3 Indexed Allocation

 Indexed Allocation combines all of the indexes for accessing each file

into a common block (for that file), as opposed to spreading them all

over the disk or storing them in a FAT table.

 Some disk space is wasted (relative to linked lists or FAT tables)

because an entire index block must be allocated for each file, regardless

of how many data blocks the file contains. This leads to questions of

how big the index block should be, and how it should be implemented.

There are several approaches:

o Linked Scheme - An index block is one disk block, which can be

read and written in a single disk operation. The first index block

contains some header information, the first N block addresses, and

if necessary a pointer to additional linked index blocks.

o Multi-Level Index - The first index block contains a set of

pointers to secondary index blocks, which in turn contain pointers

to the actual data blocks.

o Combined Scheme - This is the scheme used in UNIX inodes, in

which the first 12 or so data block pointers are stored directly in

the inode, and then singly, doubly, and triply indirect pointers

provide access to more data blocks as needed. (See below.) The

advantage of this scheme is that for small files (which many are),

the data blocks are readily accessible (up to 48K with 4K block

sizes); files up to about 4144K (using 4K blocks) are accessible

with only a single indirect block (which can be cached), and

huge files are still accessible using a relatively small number of

disk accesses (larger in theory than can be addressed by a 32-bit

address, which is why some systems have moved to 64-bit file

pointers.)

11.4.4 Performance

 The optimal allocation method is different for sequential access files

than for random access files, and is also different for small files than for

large files.

 Some systems support more than one allocation method, which may

require specifying how the file is to be used (sequential or random

access) at the time it is allocated. Such systems also provide conversion

utilities.

 Some systems have been known to use contiguous access for small files,

and automatically switch to an indexed scheme when file sizes surpass a

certain threshold.

 And of course some systems adjust their allocation schemes (e.g. block

sizes) to best match the characteristics of the hardware for optimum

performance.

11.5 Free-Space Management

 Another important aspect of disk management is keeping track of and

allocating free space.

11.5.1 Bit Vector

 One simple approach is to use a bit vector, in which each bit represents a

disk block, set to 1 if free or 0 if allocated.

 Fast algorithms exist for quickly finding contiguous blocks of a given

size

 The down side is that a 40GB disk requires over 5MB just to store the

bitmap. (For example.)

11.5.2 Linked List

 A linked list can also be used to keep track of all free blocks.

 Traversing the list and/or finding a contiguous block of a given size are

not easy, but fortunately are not frequently needed operations. Generally

the system just adds and removes single blocks from the beginning of the

list.

 The FAT table keeps track of the free list as just one more linked list on

the table.

11.5.3 Grouping

 A variation on linked list free lists is to use links of blocks of indices of

free blocks. If a block holds up to N addresses, then the first block in the

linked-list contains up to N-1 addresses of free blocks and a pointer to

the next block of free addresses.

11.5.4 Counting

 When there are multiple contiguous blocks of free space then the system

can keep track of the starting address of the group and the number of

contiguous free blocks. As long as the average length of a contiguous

group of free blocks is greater than two this offers a savings in space

needed for the free list. (Similar to compression techniques used for

graphics images when a group of pixels all the same color is

encountered.)

11.5.5 Space Maps (New)

 Sun's ZFS file system was designed for HUGE numbers and sizes of

files, directories, and even file systems.

 The resulting data structures could be VERY inefficient if not

implemented carefully. For example, freeing up a 1 GB file on a 1 TB

file system could involve updating thousands of blocks of free list bit

maps if the file was spread across the disk.

 ZFS uses a combination of techniques, starting with dividing the disk up

into (hundreds of) metaslabs of a manageable size, each having their

own space map.

 Free blocks are managed using the counting technique, but rather than

write the information to a table, it is recorded in a log-structured

transaction record. Adjacent free blocks are also coalesced into a larger

single free block.

 An in-memory space map is constructed using a balanced tree data

structure, constructed from the log data.

 The combination of the in-memory tree and the on-disk log provide for

very fast and efficient management of these very large files and free

blocks.

	Mass-Storage Structure
	10.1 Overview of Mass-Storage Structure
	10.1.1 Magnetic Disks
	10.1.2 Solid-State Disks - New
	10.1.3 Magnetic Tapes - was 12.1.2

	10.2 Disk Structure
	10.3 Disk Attachment
	10.3.1 Host-Attached Storage
	10.3.2 Network-Attached Storage
	10.3.3 Storage-Area Network

	10.4 Disk Scheduling
	10.4.1 FCFS Scheduling
	10.4.2 SSTF Scheduling
	10.4.3 SCAN Scheduling
	10.4.4 C-SCAN Scheduling
	12.4.5 LOOK Scheduling
	10.4.6 Selection of a Disk-Scheduling Algorithm

	10.6 Swap-Space Management
	10.6.1 Swap-Space Use
	10.6.2 Swap-Space Location
	12.6.3 Swap-Space Management: An Example

	10.7 RAID Structure
	10.7.1 Improvement of Reliability via Redundancy
	10.7.2 Improvement in Performance via Parallelism
	10.7.3 RAID Levels
	10.7.4 Selecting a RAID Level
	10.7.5 Extensions
	10.7.6 Problems with RAID

	10.8 Stable-Storage Implementation (Optional)

	File-System Interface
	10.1 File Concept
	10.1.1 File Attributes
	10.1.2 File Operations
	10.1.3 File Types
	10.1.4 File Structure
	10.1.5 Internal File Structure

	10.2 Access Methods
	10.2.1 Sequential Access
	10.2.2 Direct Access
	10.2.3 Other Access Methods

	10.3 Directory Structure
	10.3.1 Storage Structure
	10.3.2 Directory Overview
	10.3.3. Single-Level Directory
	10.3.4 Two-Level Directory
	10.3.5 Tree-Structured Directories
	10.3.7 General Graph Directory

	10.4 File-System Mounting
	10.5 File Sharing
	10.5.1 Multiple Users
	10.5.2 Remote File Systems
	10.5.2.1 The Client-Server Model
	10.5.2.2 Distributed Information Systems
	10.5.2.3 Failure Modes
	10.5.3 Consistency Semantics
	10.5.3.1 UNIX Semantics
	10.5.3.2 Session Semantics
	10.5.3.3 Immutable-Shared-Files Semantics

	10.6 Protection
	10.6.1 Types of Access
	10.6.2 Access Control
	10.6.3 Other Protection Approaches and Issues

	File-System Implementation
	11.1 File-System Structure
	11.2 File-System Implementation
	11.2.1 Overview
	11.2.2 Partitions and Mounting
	11.2.3 Virtual File Systems

	11.3 Directory Implementation
	11.3.1 Linear List
	11.3.2 Hash Table

	11.4 Allocation Methods
	11.4.1 Contiguous Allocation
	11.4.2 Linked Allocation
	11.4.3 Indexed Allocation
	11.4.4 Performance

	11.5 Free-Space Management
	11.5.1 Bit Vector
	11.5.2 Linked List
	11.5.3 Grouping
	11.5.4 Counting
	11.5.5 Space Maps (New)

